

Current docs (work-in-progress)

The following in-progress documents are written for early adopters
and contributors, MUA developers and privacy enthusiasts.

	Background

	discusses the motiviation, technical, social and design
approaches of Autocrypt.

	Example Data Flows and State Transitions

	Example data flows and MUA state transitions. This may be the
easiest place to get started with the concrete ideas behind
Autocrypt.

	Autocrypt Level 1: Enabling encryption, avoiding annoyances

	Minimum requirements and implementer guidance for Level 1
Autocrypt-capable MUAs.

	Autocrypt-capable MUAs level 1 implementation status

	Client implementation status.

	Interoperability With Other Cryptographic E-mail Mechanisms

	Guidance for integrating Autocrypt with other e-mail encryption
mechanisms and UI for existing MUAs.

	Future Enhancements to Autocrypt

	Future improvements for Autocrypt, beyond Level 1.

	Potential ecosystem dangers of Autocrypt

	Some documented risks and dangers to the mail ecosystem,
related to Autocrypt.

Frequently Asked Questions about Autocrypt

Glossary

	Autocrypt bot

	Description of the Autocrypt bot.

Background

Contents

	Background

	Motivation

	The Social Autocrypt Approach

	The Technical Autocrypt Approach

	Design Differences From Previous Approaches

Motivation

If users ask how they can secure their e-mail the answer
should be as simple as: use an Autocrypt-enabled mail app!

Why improve e-mail? E-Mail has been declared dead many times but
refuses to die. It remains the largest open federated identity and
messaging ecosystem, anchors the web and mobile phones. E-Mail continues to relay
sensitive information between people and organisations. It has
problems but do you prefer the proprietary, easy-to-track mobile phone
number system to become the single source of digital identification?

Why a new approach to e-mail encryption? Encrypted e-mail has been
around for decades, but has failed to see wide adoption outside of
specialist communities, in large part because of difficulties with user
experience and certification models. Autocrypt first aims to provide
convenient encryption that is neither perfect nor as secure as
traditional e-mail encryption, but is convenient enough for
much wider adoption.

The Social Autocrypt Approach

The Autocrypt project is driven by a diverse group of mail app developers,
hackers and researchers who are willing to take fresh approaches, learn from
past mistakes, and collectively aim to increase the overall encryption
of E-Mail in the net. The group effort was born and named “Autocrypt”
on December 17th 2016 by ~20 people during a 5-day meeting at the
OnionSpace in Berlin. Follow up meetings took place in March 2017 around the
Internet Freedom festival and during a subsequent gathering in Freiburg, Germany.
It remains a dynamic, fun process which is open to new people, influences and
contributions. See contact channels and upcoming events on
how you may talk with us and who “we” are currently.

The Technical Autocrypt Approach

Autocrypt uses regular E-Mail messages between people to piggyback
necessary information to allow encrypting subsequent messages; it adds
a new Autocrypt E-Mail header for transferring public
keys and driving encryption behaviour. By default, key management is
not visible to users. See below for more details about the differences
from other attempts at providing encrypted e-mail.

We are following this approach step-by-step using different “Levels”
of implementation compliance. Driven by usability concerns, we are
refining and implementing Level 1 in several mail apps
during 2017, aiming for a release at the end of 2017 which marks the
first real-life implementation milestone [https://github.com/autocrypt/autocrypt/milestone/1]. If you are
interested to learn more or want to help please join our
channels and look at where we meet next.

See Current docs (work-in-progress) for an index of all docs and discussion results so far.

Design Differences From Previous Approaches

End-to-end encrypted e-mail has been around for decades, but has failed
to see wide adoption outside of specialist communities, in large part
because of difficulties with user experience and certification models.
To better understand how the Autocrypt effort is different
from previous ones here are some of its features:

	Protect first against passive data-collecting adversaries,
resist the temptation to early-add complexity which aim to prevent
active attacks. See RFC7435 A New Perspective [https://tools.ietf.org/html/rfc7435.html#section-1.2] for some motivation of this and the next points.

	Focus on incremental deployment, always consider that there
will be both Autocrypt-enabled mail apps and traditional plain ones,
interacting with each other.

	Don’t ask users anything about keys, ever. Minimize and
usability-test what needs to be decided by users and include
resulting UI guidance in the specs. Minimize friction for people
using multiple mail apps with their accounts.

	Go for mail app changes only, don’t require changes from mail
providers or don’t depend on third party services, allowing fluid
development of deployable code and specs. Ensure mail implementors
can actually implement and influence the spec.

	Use decentralized, in-band key discovery. Make mail apps
tell each other how and when to encrypt to each other. Send this
information in a way that is hidden from users of non-autocrypt mail
clients to avoid confusing them.

Contacts and Events

Channels

If you want to talk with us you may:

	join the Autocrypt mailing list [https://lists.mayfirst.org/mailman/listinfo/autocrypt]

	collaborate through our github Autocrypt repo [https://github.com/autocrypt/autocrypt]

	join chats at #autocrypt on freenode or through matrix mirror [https://riot.im/app/#/room/#autocrypt:matrix.org].

See Autocrypt-capable MUAs level 1 implementation status for links to ongoing development.
Currently involved are developers from K9/Android [https://k9mail.github.io/],
OpenKeyChain/Android [https://www.openkeychain.org/], Enigmail [https://enigmail.net/], Mailpile [https://mailpile.is/], Bitmask/LEAP [https://leap.se/en/docs/client] as
well as people from the nextleap [https://nextleap.eu], enzevalos [https://www.inf.fu-berlin.de/groups/ag-si/enzevalos.html] and panoramix [https://panoramix-project.eu/] research projects
and the ACLU [https://www.aclu.org/].

Upcoming events

	December 27-30th 2017, Leipzig: 34th Chaos Communication Congress.
Several Autocrypters will be present. Join them in the
Autocrypt self-organized session [https://events.ccc.de/congress/2017/wiki/index.php/Session:Autocrypt] and at the Delta Chat session [https://events.ccc.de/congress/2017/wiki/index.php/Session:Delta_Chat]!

	January 10-12th 2018: RealWorldCrypto, Zuerich. A few Autocrypters
might go, maybe also try to give a Lightning talk, certainly have
side-discussions like last year.

	January 17th 2018, Lausanne, Switzerland: a day of discussions and
interchange with researchers from EPFL and the NEXTLEAP EU project
on out-of-band verification and key gossip, also in relation
to Autocrypt.

	March 2018: Internet Freedom Festival, Valencia. We proposed
two usability sessions and several Autocrypt-related folks
aim to appear in Valencia. It’s unclear at this point if we
go for a pre- or post-gathering like we did in 2017.

Past events

	November 4-8th 2017: Level 1 closure meeting in Freiburg, Germany.

	September 18-24th 2017: get-together in Freiburg im Breisgau, Germany

	August 4-8th 2017: something during the dutch hacker camp SHA2017?

	June 9-12th 2017: Autocrypt Level 1 hackathon / gathering [https://lists.mayfirst.org/pipermail/autocrypt/2017-May/000093.html] in
Freiburg im Breisgau, Germany. See this post on what happened
during the multi-day gathering in Freiburg [https://lists.mayfirst.org/pipermail/autocrypt/2017-June/000152.html].

	April 2017: Autocrypt talk and session [https://media.ccc.de/v/EH2017-8499-towards_automatic_end_to_end_mail_encryption]
at the EasterHegg 2017.

	Mar 2017: Autocrypt sessions at the Internet Freedom Festival [https://internetfreedomfestival.org/]
with hackers and users, several Autocrypt-people were there.
We also did an extra session ahead of the IFF where we removed
the dependency on the “SMA” (IMAP shared message archive).

	Jan 2017: a lightning talk from dkg at
RealWorldCrypto 2017 [http://www.realworldcrypto.com/rwc2017] in New york

	Dec 2016: at 33c3 [https://events.ccc.de/congress/2016/wiki/Main_Page], Hamburg, holger’s autocrypt 15min talk [https://fossil.net2o.de/33c3/doc/trunk/wiki/autocrypt.md] and
opportunistic mail panel discussion [https://fossil.net2o.de/33c3/doc/trunk/wiki/panel.md]
at the We Fix the Net [https://events.ccc.de/congress/2016/wiki/Session:We_Fix_the_Net] sessions.

Example Data Flows and State Transitions

Autocrypt key discovery happens through headers of mail messages sent
between mail apps. Similar to TLS’s machine to machine handshake,
users first need to have a cleartext mail exchange. Subsequent mails
from the receiving peer may then be encrypted. Mail apps show
encryptability to their users at “compose-mail” time and give them a
choice of encryption or cleartext, defaulting to what the other side
has specified in their header.

These examples try to walk a new reader through the basic flow.

Note

Autocrypt key discovery is safe only against passive
eavesdroppers. It is trivial for providers to perform active
downgrade or man-in-the-middle attacks on Autocrypt’s key
discovery. Users may, however, detect such tampering if they
verify their keys out-of-band at some later point in time. We hope
this possibility will keep most providers honest or at least
prevent them from performing active attacks on a massive scale.

Please also see https://github.com/autocrypt/autocrypt/tree/master/src/tests/data
for specific examples of Autocrypt messages.

Contents

	Example Data Flows and State Transitions

	Basic network protocol flow

	“Happy path” example: 1:1 communication

	Group mail communication (1:N)

	Losing access to decryption key

	Downgrading / switch to a MUA without Autocrypt support

Basic network protocol flow

Establishing encryption happens as a side effect when people send each other mail:

	A MUA (mail user agent) adds an Autocrypt:
header to all messages it sends out. The header
contains all necessary information to allow encryption
(especially the encryption key; see Internal state storage for
the format in detail).

	A MUA will scan incoming mails for encryption headers and associate
the info with a canonicalized version of the From:`
address contained in the RFC 822 [https://tools.ietf.org/html/rfc822.html] message.

	A MUA will encrypt a message if it has encryption keys
for all recipients and it determined through user choice or
recipient-determined policies that the message should be encrypted.

“Happy path” example: 1:1 communication

[image: _images/autocrypthappy.svg]Consider a blank state and a first outgoing message from Alice to Bob:

From: alice@a.example
To: bob@b.example
...

Upon sending this mail, Alice’s MUA will add a header which contains her
encryption key:

Autocrypt: addr=alice@a.example; type=1; prefer-encrypt=mutual; keydata=...

Bob’s MUA will scan the incoming mail, find Alice’s key and store it
associated to the alice@a.example address taken from the
addr-attribute. When Bob now composes a mail to Alice his MUA will
find the key and signal to Bob that the mail will be encrypted and
after finalization of the mail encrypt it. Moreover, Bob’s MUA will
add its own encryption info:

Autocrypt: addr=bob@b.example; type=1; prefer-encrypt=mutual; keydata=...

When Alice’s MUA now scans the incoming mail from Bob it will store
Bob’s key and the fact that Bob sent an encrypted mail. Subsequently
both Alice and Bob will have their MUAs encrypt mails to each other.

If prefer-encrypted is sent as mutual and this is also the choice set for the MUA,
the MUA MUST default to encrypting the next e-mail. In all other cases, the MUA MUST
default to plaintext to make sure the recipient can read the e-mail.

Group mail communication (1:N)

Consider a blank state and a first outgoing message from Alice to Bob
and Carol. Alice’s MUA adds a header just like in the 1:1 case so
that Bob’s and Carol’s MUAs will learn Alice’s key. After Bob and Carol
have each replied once, all MUAs will have appropriate keys for
encrypting the group communication.

It is possible that an encrypted mail is replied to in cleartext (unencrypted).
For example, consider this mail flow:

Alice -> Bob, Carol
Bob -> Alice, Carol
Carol -> Alice (not to Bob!)

Alice and Carol have now all encryption keys but Bob only has Alice’s
because he never saw a mail from Carol. Alice can now send an encrypted
mail to Bob and Carol but Bub will not be able to respond encrypted
before his MUA has seen a mail from Carol. This is fine because Autocrypt
is about opportunistic encryption, i.e. encrypt if possible and
otherwise don’t get in the way of users.

Losing access to decryption key

If Alice loses access to her decryption secret:

	she lets her MUA generate a new key

	her MUA will add an Autocrypt header containing the
new key with each mail

	receiving MUAs will replace the old key with the new key

Meanwhile, if Bob sends Alice a mail encrypted to the old key she will
not be able to read it. After she responds (e.g. with “Hey, can’t read
your mail”) Bob’s MUA will see the new key and subsequently use it.

Todo

Check if we can encrypt a MIME e-mail such that non-decrypt-capable MUAs
will show a message that helps Alice to reply in the suggested way. We don’t
want people to read handbooks before using Autocrypt so any guidance we can
“automatically” provide in case of errors is good.

Note

Unless we can get perfect recoverability (also for device loss etc.) we will
always have to consider this “fatal” case of losing a secret key and how
users can deal with it. Especially in the federated e-mail context we do
not think perfect recoverability is feasible.

Downgrading / switch to a MUA without Autocrypt support

Alice might decide to switch to a different MUA which does not support
Autocrypt.

A MUA which previously saw an Autocrypt header and/or
encryption from Alice now sees an unencrypted mail from Alice and no
Autocrypt header. This will disable encryption to Alice
for subsequent mails.

Autocrypt relies on non-Autocrypt-capable MUAs to act as a sort of
“reset” for the user in the case where they stop using Autocrypt.

Autocrypt Level 1: Enabling encryption, avoiding annoyances

Autocrypt aims to incrementally and carefully replace cleartext e-mail
with end-to-end encrypted e-mail. This differs from the traditional approach
of maximizing the security of individual mail communications.
Sometimes Autocrypt recommends to send cleartext mail even though
encryption appears technically possible. This is because we want to
avoid unreadable mail for users. Users may mix both Autocrypt-capable
and traditional mail apps and they may lose devices or in other ways
the ability to decrypt in unrecoverable ways. Reverting to cleartext
when we suspect such situations is a key part of our aim to stay out of
the way of users.

Another major difference in approach is that Autocrypt Level 1 only
defends against passive data collection attacks. We share and support
the new perspective stated in RFC7435 (“Opportunistic Security: Some
Protection Most of the Time”) [https://tools.ietf.org/html/rfc7435.html#section-1.2]. Protection against
active adversaries (those which modify messages in transit) is the aim
of future specifications.

Level 1 makes it easy for users to encrypt, based on an automatic and
decentralized key distribution mechanism. There are no dependencies on
key servers and it is meant to work with existing e-mail providers.
Level 1 focuses on the use of Autocrypt on a single device. Users get
rudimentary support on using Autocrypt on more than one device or mail app.
This is internally realized through sending and receiving an Autocrypt
Setup Message, secured by manually entering a long number. Improving
usability for maintaining synchronized Autocrypt state on multiple
devices is the aim of future specification efforts.

Last but not least, Level 1 is meant to be relatively easy for
developers to adopt. It describes the basic capabilities required for
a mail app to be Autocrypt-capable at Level 1, allowing it to exchange
end-to-end encrypted e-mails with other Autocrypt-capable mail apps. The
spec contains detailed guidance on protocol, internal state and user
interface concerns. We have a good track record of supporting new
implementers. Please don’t hesitate to contact the group [https://autocrypt.org/en/latest/contact.html] or bring up issues or
pull requests. Autocrypt is a living specification and we envision
both bugfix and backward-compatible feature releases.

Overview

Approach and High Level Overview

Autocrypt’s primary goal is to automate both secret and public key
management so that users can encrypt mail without specialized
knowledge.

This specification adds an Autocrypt-specific mail header to outgoing mails, which contains, among other
information, the sender’s public key. Transferring public
keys in-band means that key discovery in Autocrypt does not require
external infrastructure like OpenPGP keyservers or x509 PKI.

Autocrypt provides a set of rules that
tracks this information for each communication peer. Autocrypt uses
this information to determine whether encryption is possible and makes
a recommendation about whether encryption
should be enabled for a given set of recipients.

This specification also introduces the Autocrypt Setup Message as a way to transfer secret key material and related
settings to other e-mail programs controlled by the same user. This
spec also provides guidance on how and when to generate, look for, and
import these messages.

Autocrypt aggressively distributes public keys, but conservatively recommends
encryption to avoid disruption to established email workflows.
Specifically, Autocrypt only recommends that an email be encrypted if
encryption is possible, and:

	The sender specifically requests encryption during message
composition;

	The email is in reply to an encrypted message; or,

	The sender and the recipients have explicitly stated that they
prefer encrypted email.

Requirements on MUA/E-mail Provider interactions

Autocrypt tries to impose minimal requirements on MUA and
e-mail service interactions. Specifically, an Autocrypt-capable MUA
needs to be able to:

	Control the contents of outgoing e-mail including the ability to set
custom e-mail headers;

	Send e-mail on its own (required by the Autocrypt Setup
Message);

	Read whole, raw e-mails including message headers; and,

	Optionally, scan the user’s mailbox for mail with
specific headers.

If a particular e-mail account does not expose one of the required
features (e.g., if it only exposes a javascript-driven web interface
for message composition that does not allow setting e-mail headers),
then the e-mail account cannot be used with Autocrypt. An
Autocrypt-capable MUA may still access and control the account, but it
will not be able to enable Autocrypt on it.

Autocrypt Internal State

An Autocrypt MUA needs to associate information with the peers it
communicates with and the accounts it controls.

Communication Peers

Each communication peer is identified by an e-mail address. Autocrypt
associates state with each peer. Conceptually, we represent this
state as a table named peers, which is indexed by the peer’s
canonicalized e-mail address, .

For the peer with the address addr, an MUA MUST associate the
following attributes with peers[addr]:

	last_seen: The UTC timestamp of the most recent effective date
(definition) of all messages that the MUA
has processed from this peer.

	autocrypt_timestamp: The UTC timestamp of the most recent
effective date (the “youngest”) of all messages containing a valid
Autocrypt header that the MUA has processed from this peer.

	public_key: The value of the keydata attribute derived from
the youngest Autocrypt header that has ever been seen from the
peer.

	prefer_encrypt: The prefer-encrypt value (either
nopreference or mutual) derived from the youngest
Autocrypt header ever seen from the peer.

Autocrypt-capable MUAs that implement Gossip should
also associate the following additional attributes with
peers[addr]:

	gossip_timestamp: the UTC timestamp of the most recent effective
date of all messages containing a valid Autocrypt-Gossip header
about the peer.

	gossip_key: the value of the keydata attribute derived from
the most recent message containing a valid Autocrypt-Gossip
header about the peer.

How this information is managed and used is discussed in Peer State Management.

Accounts controlled by the MUA

A Level 1 MUA maintains an internal structure accounts indexed by
the account’s canonicalized e-mail address (addr). For each account controlled
by the MUA, accounts[addr] has the following attributes:

	enabled: a boolean value, indicating whether Autocrypt is
enabled for this account.

	secret_key: The RSA secret key material used for
the account (see Secret key generation and storage).

	public_key: The OpenPGP transferable public key (OpenPGP
“Transferable Public Key” [https://tools.ietf.org/html/rfc4880.html#section-11.1]) derived
from the secret key.

	prefer_encrypt: The user’s encryption
preference for this account. This is either mutual or nopreference.
This SHOULD default to nopreference.

If accounts[addr].enabled is true, the MUA SHOULD allow the
user to switch the setting for accounts[addr].prefer_encrypt.
This choice might be hidden in something like a “preferences pane”.
See Account Preferences for a specific example of how this could
look.

How this information is managed and used is discussed in Managing accounts controlled by the MUA.

Peer State Management

An Autocrypt MUA updates the state it holds for each communication
peer using the e-mails received from that peer. Specifically,
Autocrypt updates the state using the Autocrypt e-mail header.

The Autocrypt Header

The Autocrypt header has the following format:

Autocrypt: addr=a@b.example.org; [prefer-encrypt=mutual;] keydata=BASE64

There are three defined attributes:

	The addr attribute is mandatory, and contains the single
recipient address this header is valid for. If this address
differs from the one in the From header, the entire
Autocrypt header MUST be treated as invalid.

The Internet Message Format [https://tools.ietf.org/html/rfc5322.html#section-3.6.2] documents
three types of originator fields: From, Sender, and
Reply-To. Autocrypt is concerned only with the From field,
and ignores the other originator fields.

	The prefer-encrypt attribute is optional and can only occur
with the value mutual. Its presence in the Autocrypt
header indicates an agreement to enable encryption by default with
other peers who have the same preference. An Autocrypt Level 1 MUA
that sees the attribute with any other value (or that does not see
the attribute at all) should interpret the value as
nopreference.

	The keydata attribute is mandatory, and contains the key data
for the specified addr recipient address. The value of the
keydata attribute is a Base64 representation of the binary
OpenPGP “Transferable Public Key” [https://tools.ietf.org/html/rfc4880.html#section-11.1]. For
ease of parsing, the keydata attribute MUST be the last
attribute in this header.

Additional attributes are possible before the keydata
attribute. If an attribute name starts with an underscore (_), it
is a “non-critical” attribute. An attribute name without a leading
underscore is a “critical” attribute. The MUA SHOULD ignore any
unsupported non-critical attributes and continue parsing the rest of
the header as though the attribute does not exist. It MUST treat the
entire Autocrypt header as invalid if it encounters a “critical”
attribute that it doesn’t support.

To introduce incompatible changes, future versions of Autocrypt may
send multiple Autocrypt headers, and hide the incompatible headers
from Level 1 MUAs by using critical attributes. According to the
above rules, such headers will be judged invalid, and discarded by
level 1 MUAs. Such an update to the specification will also have
to describe how an updated MUA will deal with multiple valid headers.

OpenPGP Based key data

The keydata sent by an Autocrypt-enabled Level 1 MUA MUST consist
of an OpenPGP “Transferable Public Key” [https://tools.ietf.org/html/rfc4880.html#section-11.1]
containing exactly these five OpenPGP packets:

	a signing-capable primary key

	a user id

	a self signature over the user id by the primary key

	an encryption-capable subkey

	a binding signature over the subkey by the primary key

The content of the user id packet is only decorative. By convention, it
contains the same address used in the addr attribute placed in angle brackets.
(This makes it conform to the RFC 5322 [https://tools.ietf.org/html/rfc5322.html] grammar angle-addr.) For compatibility
concerns, the user id SHOULD NOT be an empty string.

These packets MUST be assembled in binary format (not ASCII-armored),
and then base64-encoded.

A Level 1 MUA MUST be capable of processing and handling 2048-bit and
3072-bit RSA public keys. It MAY support other OpenPGP key formats
found in an Autocrypt header (for example, by passing it agnostically
to an OpenPGP backend for handling).

Header injection in outbound mail

During message composition, if the From: header of the outgoing
e-mail (the from-addr) matches an address for which
accounts[from-addr].enabled is true and the Autocrypt-capable
MUA has secret key material (accounts[from-addr].secret_key), the
MUA SHOULD include an Autocrypt header.

This header MUST contain the corresponding public key material
(accounts[from-addr].public_key) as the keydata attribute, and
from-addr as the addr attribute. The most minimal Level 1
compliant MUA will only include these two attributes. If
accounts[from-addr].prefer_encrypt is set to mutual, then the
header MUST have a prefer-encrypt attribute with the value
mutual.

The MUA MUST NOT include more than one valid Level 1 Autocrypt
header (see Updating Autocrypt Peer State).

If the From address changes during message composition (e.g., if
the user selects a different outbound identity), then the MUA MUST
change the Autocrypt header accordingly.

An MUA SHOULD send out the same Autocrypt: header in all messages
from a given outbound identity. An MUA SHOULD NOT vary the header
based on the message’s recipients. If (for whatever reason) the MUA
needs to update (or discovers an update of) the user’s keydata at
some point, the MUA SHOULD send the updated keydata in all
subsequent Autocrypt headers.

See Example Autocrypt headers for examples of outbound headers and
the following sections for header format definitions and parsing.

Internal state storage

See Communication Peers for the information stored for each
communication peer.

Autocrypt MUAs keep state about each peer, to handle
several nuanced situations that have caused trouble or annoyance in the
past. This state is updated even when the peer sends mail without an
Autocrypt header.

For example, if a remote peer disables Autocrypt or drops back to
only using a non-Autocrypt MUA, we must stop sending
encrypted mails to this peer automatically.

In addition to the per-peer state described in Communication Peers,
MUAs MAY also store other information gathered for heuristic
purposes, or for other cryptographic schemes (see
the Autocrypt website [https://autocrypt.org/en/latest/optional-state.html]
for some example ideas).

However, in order to support future synchronization of Autocrypt state
between MUAs, it is critical that Autocrypt-capable MUAs maintain the
state specified here, regardless of what additional state they track.

Note

	An implementation MAY also choose to use keys from other sources
(e.g., a local keyring) at its own discretion.

	If an implementation chooses to automatically ingest a key from an
application/pgp-keys attachment as though it was found in an
Autocrypt header, it should only do so if the attached key has
a User ID [https://tools.ietf.org/html/rfc4880.html#section-5.11] that matches the message’s
From address.

Updating Autocrypt Peer State

Incoming messages may be processed to update the peers entry for
the sender identified by from-addr as extracted from the From
header, by an MUA at receive or display time.

Messages SHOULD be ignored (i.e., peers[from-addr] SHOULD NOT be
updated) in the following cases:

	The content-type is multipart/report. In this case, it can be assumed
the message was auto-generated. This avoids triggering a reset
state from received Message Disposition Notifications (RFC 3798 [https://tools.ietf.org/html/rfc3798.html]).

	There is more than one address in the From header.

	The MUA believes the message to be spam. If the user marks the
message as not being spam the message MAY then be processed for
Autocrypt headers.

When parsing an incoming message, an MUA SHOULD examine all Autocrypt
headers, rather than just the first one. If there is more than one
valid header, this SHOULD be treated as an error, and all Autocrypt
headers discarded as invalid.

Updating peers[from-addr] depends on:

	the effective date of the message, which we define as the sending
time of the message as indicated by its Date header, or the time
of receipt if that date is in the future or unavailable.

Note

A message without a Date header, or with a Date that
seems to be in the far future can cause problems for MUAs that
encounter the message repeatedly (e.g. re-delivery, subsequent
scans, etc). An MUA MAY decide to ignore such a message entirely
for the purposes of Autocrypt processing. If an MUA is capable
of associating information with a recieved message, it could
instead save the effective date of such a message the first
time it sees it to avoid accidental re-processing.

	the keydata and prefer-encrypt attributes of the single valid
Autocrypt header (see above), if available.

The update process proceeds as follows:

	If the message’s effective date is older than the
peers[from-addr].autocrypt_timestamp value, then no changes are
required, and the update process terminates.

	If the message’s effective date is more recent than
peers[from-addr].last_seen then set
peers[from-addr].last_seen to the message’s effective date.

	If the Autocrypt header is unavailable, no further changes are
required and the update process terminates.

	Set peers[from-addr].autocrypt_timestamp to the message’s
effective date.

	Set peers[from-addr].public_key to the corresponding
keydata value of the Autocrypt header.

	Set peers[from-addr].prefer_encrypt to the corresponding
prefer-encrypt value of the Autocrypt header.

Provide a recommendation for message encryption

On message composition, an Autocrypt-capable MUA
can decide whether to try to encrypt the new e-mail
message. Autocrypt provides a recommendation for the MUA.

All Autocrypt-capable MUAs should be able to calculate the same
Autocrypt recommendation.

This recommendation algorithm provides sensible guidance that avoids
many common problems, and Autocrypt-capable MUAs SHOULD follow the
recommendation. An implementation that deviates from the
recommendation should do so on the basis of specific external evidence
or knowledge, while carefully considering the impact of any variation,
including:

	does it increase the chance of producing unexpectedly unreadable
mail (for either the sender or the recipient)?

	does it leak previously encrypted content in the clear?

	does it force the user to confront a choice they do not have the
information or knowledge to make safely?

If an implementation deviates from the Autocrypt recommendation in a
meaningful and useful way, the implementer should describe the
variation publicly so it can be considered for future revisions of
this specification.

Recommendation structure

The Autocrypt recommendation depends on the recipient addresses of the
draft message, and on whether or not the message is a reply to an
encrypted message. When the user changes the recipients during
composition, the Autocrypt recommendation may change.

The output of the Autocrypt recommendation algorithm has two elements:

	ui-recommendation: a single state recommending the state of the
encryption user interface, described below.

	target-keys: a map of recipient addresses to public keys.

ui-recommendation can take four possible values:

	disable: Disable or hide any UI that would allow the user to
choose to encrypt the message. This happens iff encryption is not
immediately possible.

	discourage: Enable UI that would allow the user to choose to
encrypt the message, but do not default to encryption. If the user
manually enables encryption, the MUA SHOULD warn that the recipient
may not be able to read the message. This warning message MAY be
supplemented using optional counters and user-agent state [https://autocrypt.org/en/latest/optional-state.html].

	available: Enable UI that would allow the user to choose to
encrypt the message, but do not default to encryption.

	encrypt: Enable UI that would allow the user to choose to send
the message in cleartext, and default to encryption.

Recommendations for single-recipient messages

The Autocrypt recommendation for a message composed to a single
recipient with the e-mail address to-addr depends primarily on the
value stored in peers[to-addr].

Determine if encryption is possible

If there is no peers[to-addr], then set ui-recommendation to
disable, and terminate.

For the purposes of the rest of this recommendation, if either
public_key or gossip_key is revoked, expired, or otherwise
known to be unusable for encryption, then treat that key as though it
were null (not present).

If both public_key and gossip_key are null, then set
ui-recommendation to disable and terminate.

Otherwise, we derive the recommendation using a two-phase algorithm.
The first phase computes the preliminary-recommendation.

Preliminary Recommendation

If public_key is null, then set
target-keys[to-addr] to gossip_key and set
preliminary-recommendation to discourage and skip to the
Deciding to Encrypt by Default.

Otherwise, set target-keys[to-addr] to public_key.

If autocrypt_timestamp is more than 35 days older than
last_seen, set preliminary-recommendation to discourage.

Otherwise, set preliminary-recommendation to available.

Deciding to Encrypt by Default

The final phase turns on encryption by setting ui-recommendation to
encrypt in two scenarios:

	If preliminary-recommendation is either available or
discourage, and the message is composed as a reply to an
encrypted message, or

	If the preliminary-recommendation is available and both
peers[to-addr].prefer_encrypt and
accounts[from-addr].prefer_encrypt are mutual.

Otherwise, the ui-recommendation is set to
preliminary-recommendation.

Recommendations for messages to multiple addresses

For level 1 MUAs, the Autocrypt recommendation for a message composed
to multiple recipients, we derive the message’s recommendation from
the recommendations for each recipient individually.

The aggregate target-keys for the message is the merge of all
recipient target-keys.

The aggregate ui-recommendation for the message is derived in the
following way (the earliest matching rule encountered below takes
precedence over later rules):

	If any recipient has a ui-recommendation of disable, then
the message’s ui-recommendation is disable.

	If every recipient has a ui-recommendation of encrypt,
then the message ui-recommendation is encrypt.

	If any recipient has a ui-recommendation of discourage,
then the message ui-recommendation is discourage.

Otherwise, the message ui-recommendation is available.

While composing a message, a situation might occur where the
ui-recommendation is available, the user has explicitly
enabled encryption, and then modifies the list of recipients in a way
that changes the ui-recommendation to disable. When this
happens, the MUA should not disable encryption without communicating
this to the user. A graceful way to handle this situation is to save
the enabled state, and only prompt the user about the issue when they
send the mail.

Mail Encryption

Note

An e-mail that is said to be “encrypted” here will be both signed
and encrypted in the cryptographic sense.

An outgoing e-mail will be sent encrypted in either of two cases:

	the Autocrypt recommendation for the list of recipients is
encrypt, and not explicitly overridden by the user, or

	the Autocrypt recommendation is available or discourage,
and the user chose to encrypt.

When encrypting, the MUA MUST construct the encrypted message as a
PGP/MIME [https://tools.ietf.org/html/rfc3156.html] message that is signed by the user’s Autocrypt
key, and encrypted to the currently known Autocrypt key of each
recipient, as well as the sender’s Autocrypt key.

E-mail Drafts

For messages that are going to be encrypted when sent, the MUA MUST
take care to not leak the cleartext of drafts or other
partially composed messages to their e-mail provider (e.g., in the
“Drafts” folder). If there is a chance that a message could be
encrypted, the MUA SHOULD encrypt the draft only to itself before storing
it remotely. The MUA SHOULD NOT sign drafts.

Cleartext replies to encrypted mail

In the common case, a reply to an encrypted message will also be
encrypted. Due to Autocrypt’s opportunistic approach to key discovery,
however, it is possible that keys for some of the recipients may not
be available, and, as such, a reply can only be sent in the clear.

To avoid leaking cleartext from the original encrypted message in this
case, the MUA MAY prepare the cleartext reply without including any of
the typically quoted and attributed text from the previous message.
Additionally, the MUA MAY include some text in the message body
describing why the usual quoted text is missing. An example of such
copy can be found in Example Copy when a Reply can’t be Encrypted.

The above recommendations are only “MAY” and not “SHOULD” or “MUST”
because we want to accommodate a user-friendly Level 1 MUA that stays
silent and does not impede the user’s ability to reply. Opportunistic
encryption means we can’t guarantee encryption in every case.

Key Gossip

It is a common use case to send an encrypted mail to a group of
recipients. To ensure that these recipients can encrypt messages when
replying to that same group, the keys of all recipients can be
included in the encrypted payload. This does not include BCC
recipients, which by definition must not be revealed to other
recipients.

The Autocrypt-Gossip header has the format as the Autocrypt
header (see autocryptheaderformat). Its addr attribute
indicates the recipient address this header is valid for as usual, but
may relate to any recipient in the To or Cc header.
See example in Example Autocrypt Gossip headers

Key Gossip Injection in Outbound Mail

An Autocrypt MUA MAY include Autocrypt-Gossip headers in messages
with more than one recipient. These headers MUST be placed in the root
MIME part of the encrypted message payload. The encrypted payload in
this case contains one Autocrypt-Gossip header for each recipient,
each of which:

	MUST include an addr attribute that matches one of the
recipients in the To or Cc headers.

	MUST include the keydata attribute which MUST contain the
same public key which is used to encrypt the mail to the recipient
referenced by addr. See also Preliminary Recommendation
for how this key is selected.

	SHOULD NOT include a prefer-encrypt attribute.

To avoid leaking metadata about a third party in the clear, an
Autocrypt-Gossip header SHOULD NOT be added outside an encrypted
MIME part.

Updating Autocrypt Peer State from Key Gossip

An incoming message may contain one or more Autocrypt-Gossip
headers in the encrypted payload. Each of these headers may update the
Autocrypt peer state of the gossiped recipient identified by its
addr value (referred to here as gossip-addr) in the following
way:

	If gossip-addr does not match any recipient in the mail’s
To or Cc header, the update process terminates (i.e.,
header is ignored).

	If peers[gossip-addr].gossip_timestamp is more recent than the
message’s effective date, then the update process terminates.

	Set peers[gossip-addr].gossip_timestamp to the message’s
effective date.

	Set peers[gossip-addr].gossip_key to the value of the
keydata attribute.

Managing accounts controlled by the MUA

See Accounts controlled by the MUA for a definition of the structure of
information stored about the MUA’s own e-mail accounts.

Secret key generation and storage

The MUA SHOULD generate and store two RSA 3072-bit secret keys for the
user, one for signing and self-certification, and the other for
decrypting. An MUA with hardware constraints (e.g., one using an external
crypto token) MAY choose to generate and store 2048-bit RSA secret
keys instead. The MUA MUST be capable of assembling these keys into
an OpenPGP certificate (RFC 4880 “Transferable Public
Key” [https://tools.ietf.org/html/rfc4880.html#section-11.1]) that indicates these capabilities.

Secret key protection at rest

The secret key material should be protected from access by other
applications or co-tenants of the device at least as well as the
passwords the MUA retains for the user’s IMAP or SMTP accounts.

The MUA MAY protect the secret key (and other sensitive data it has
access to) with a password, but it SHOULD NOT require the user to
enter the password each time they send or receive a mail. Since
Autocrypt-enabled MUAs sign all encrypted outgoing
messages, it could happen that the user has to enter
the password very often, both for reading and sending mail. This
introduces too much friction to become part of a routine daily
workflow.

Note that password protection of the secret key carries with it a risk
that the user might forget their password, which might result in
catastrophic data loss. Unlike IMAP or SMTP credentials (which can be
reset by the server operator given some sort of out-of-band
confirmation), there is no recovery workflow possible for the loss of
a password protecting a secret key. An MUA that chooses to offer
password protection of the secret key (or other sensitive data) SHOULD
support usable and secure backup/recovery workflows for the protected
material.

Protection of the user’s keys (and other sensitive data) at rest is
achieved more easily and securely with filesystem-based encryption and
other forms of access control.

Handling Multiple Accounts and Aliases

An MUA that is capable of connecting to multiple e-mail accounts
SHOULD have a separate and distinct Autocrypt accounts[from-addr]
for each e-mail account with the address from-addr.

A multi-account MUA MAY maintain a single peers table that merges
information from e-mail received across all accounts for the sake of
implementation simplicity. While this results in some linkability
between accounts (the effect of mails sent to one account can be
observed by activity on the other account), it provides a more uniform
and predictable user experience. Any linkability concerns introduced by
Autocrypt can be mitigated by using a different MUA for each e-mail
account.

Sometimes a user may be able to send and receive emails with multiple
distinct e-mail addresses (“aliases”) via a single account. For the
purposes of Autocrypt, the MUA SHOULD treat each specific alias as a
distinct account.

Avoiding MUA Conflicts

If more than one Autocrypt-enabled MUA generates a key and then
distributes it to communication peers, encrypted mail sent to the user
is only readable by the MUA that sent the last message. This can lead
to behavior that is unpredictable and confusing for the user.

See section Helping Users get Started for guidance on how to detect and
avoid such a situation.

Autocrypt Setup Message

To avoid “lock-in” of secret key material on a particular MUA,
Autocrypt level 1 includes a way to “export” the user’s keys and her
prefer-encrypt state for other MUAs to pick up,
asynchronously and with explicitly required user interaction.

The mechanism available is a specially-formatted e-mail message called
the Autocrypt Setup Message. An already-configured Autocrypt MUA
can generate an Autocrypt Setup Message, and send it to itself. A
not-yet-configured Autocrypt MUA (a new MUA in a multi-device
case, or recovering from device failure or loss) can import the
Autocrypt Setup Message and recover the ability to read existing
messages.

An Autocrypt Setup Message is protected with a Setup Code.

Message Structure

The Autocrypt Setup Message itself is an e-mail message with a
specific format. While the message structure is complex, it is
designed to be easy to pack and unpack using common OpenPGP tools,
both programmatically and manually.

	Both the To and From headers MUST be the address of the user account.

	The Autocrypt Setup Message MUST contain an
Autocrypt-Setup-Message: v1 header.

	The Autocrypt Setup Message MUST have a multipart/mixed structure,
and it MUST have as first part a human-readable description about
the purpose of the message (e.g. text/plain or text/html or
multipart/alternative).

	The second mime part of the message MUST have Content-Type
application/autocrypt-setup, and SHOULD have Content-Disposition
of attachment. Its content consists of the user’s ASCII-armored
secret key, encrypted within an ASCII-armored OpenPGP
symmetrically-encrypted message. Specifically, this means a block
delimited with -----BEGIN PGP MESSAGE----- and -----END PGP
MESSAGE-----, which contains two OpenPGP packets: a
Symmetric-Key Encrypted Session Key [https://tools.ietf.org/html/rfc4880.html#section-5.3]
followed by a Symmetrically Encrypted Integrity Protected Data
Packet [https://tools.ietf.org/html/rfc4880.html#section-5.13].

	There MAY be text above or below the ASCII-armored encrypted data in
the second MIME part, which MUST be ignored while processing. This
allows implementations to optionally add another human-readable
explanation.

	The encrypted payload MUST begin with an ASCII-armored RFC
4880 Transferable Secret Key [https://tools.ietf.org/html/rfc4880.html#section-11.2]. All trailing data
after the first ASCII-armor ending delimiter MUST be stripped
before processing the secret key. The ASCII-armored secret key
SHOULD have an Autocrypt-Prefer-Encrypt header that contains the
current accounts[addr].prefer_encrypt setting.

	The symmetric encryption algorithm used MUST be AES-128.
The passphrase MUST be the Setup Code (see below), used
with OpenPGP’s salted+iterated S2K algorithm [https://tools.ietf.org/html/rfc4880.html#section-3.7.1.3].

Setup Code

The Setup Code MUST be generated by the implementation itself using a
Cryptographically secure pseudorandom number generator (CSPRNG) [https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator],
and presented directly to the user for safekeeping. It MUST NOT be
included in the cleartext of the Autocrypt Setup Message, or otherwise
transmitted over e-mail.

An Autocrypt Level 1 MUA MUST generate a Setup Code as UTF-8 string
of 36 numeric characters, divided into nine blocks of four, separated
by dashes. The dashes are part of the secret code and there are no
spaces. This format holds about 119 bits of entropy. It is designed to
be unambiguous, pronounceable, script-independent (chinese, cyrillic
etc.), easily input on a mobile device and split into blocks that are
easily kept in short term memory. For instance:

9503-1923-2307-
1980-7833-0983-
1998-7562-1111

An Autocrypt Setup Message that uses this structure for its Setup Code
SHOULD include a Passphrase-Format header with value
numeric9x4 in the ASCII-armored data. This allows providing a
specialized input form during decryption, with greatly improved
usability.

As a further measure to improve usability, it is RECOMMENDED to reveal
the first two digits of the first block in a Passphrase-Begin
header, sacrificing about 7 bits of entropy. Those digits can be
pre-filled during decryption, which reassures the user that they have
the correct code before typing the full 36 digits. It also helps
mitigate a possible type of phishing attack that asks the user to
input their Setup Code.

The headers might look like this:

Passphrase-Format: numeric9x4
Passphrase-Begin: 95

If those digits are included in the headers, they may also
be used in the descriptive text that is part of the Setup Message, to
distinguish different messages.

Setup Message Creation

An Autocrypt MUA MUST NOT create an Autocrypt Setup Message without
explicit user interaction. When the user takes this action for a
specific account, the MUA:

	Generates a Setup Code.

	Optionally, displays the Setup Code to the user, prompts the user
to write it down, and then hides it and asks the user to re-enter
it before continuing. This minor annoyance is a recommended
defense against worse annoyance: it ensures that the code was
actually written down and the Autocrypt Setup Message is not
rendered useless.

	Produces an ASCII-armored, minimized OpenPGP Transferable Secret
Key [https://tools.ietf.org/html/rfc4880.html#section-11.2] out of the key associated with that account.

	Symmetrically encrypts the OpenPGP transferable secret key using
the Setup Code as the passphrase.

	Composes a new self-addressed e-mail message that contains the
payload as a MIME part with the appropriate Content-Type and other
headers.

	Sends the generated e-mail message to its own account.

	Suggests to the user to either back up the message or to import it
from another Autocrypt-capable MUA.

A Level 1 MUA MUST be able to create an Autocrypt Setup Message, to
preserve users’ ability to recover from disaster, and to choose to use
a different Autocrypt-capable MUA in the future.

Setup Message Import

An Autocrypt-capable MUA SHOULD support the ability to find and import
an Autocrypt Setup Message when the user has not yet configured
Autocrypt (that is, when accounts[addr].secret_key is unset). An
MUA in this state could look for such a message in several ways,
including:

	If the user decides to enable Autocrypt for an account, and
indicates to the MUA that an older MUA has already enabled
Autocrypt on that account, the new MUA could ask the user to
generate an Autocrypt Setup Message from the old MUA, and then wait
(e.g., via IMAP IDLE [https://tools.ietf.org/html/rfc2177.html]) for such a message to arrive.

	The MUA could proactively scan the account’s mailbox for a message
that matches these characteristics, and it could alert the user if
it discovers one.

When looking for an Autocrypt Setup Message, the MUA may encounter
messages that look similar to what it expects, but are not
well-formed. If the MUA discovers an e-mail message that has the
Autocrypt-Setup-Message header but its value is not v1, the
MUA SHOULD ignore this message entirely.

When looking for an Autocrypt Setup Message, if the MUA discovers a
message with the Autocrypt-Setup-Message: v1 header with To:
and From: headers matching an account controlled by the MUA, but
the message’s metadata and structure is not as expected, the MUA
SHOULD alert the user that a malformed Setup Message has been found,
and it SHOULD NOT offer to import the message.

If the MUA finds a good Autocrypt Setup Message, it should offer to
import it to enable Autocrypt. If the user agrees to do so:

	The MUA prompts the user for their corresponding Setup Code.
If there is a Passphrase-Format header in the outer OpenPGP armor and
its value is numeric9x4, then the MUA MAY present a specialized
input dialog assisting the user to enter a code in the format described
above.
If there is no Passphrase-Format header, or the value is unknown,
then the MUA MUST provide a plain UTF-8 string text entry.

	The MUA should try decrypting the message with the supplied Setup
Code. The Code serves both for decryption as well as
authenticating the message. Extra care needs to be taken with some
PGP implementations that the Setup Code is actually used for
decryption. For example, this is difficult to do correctly with
GnuPG [https://dev.gnupg.org/T3277].

	If it decrypts, then the MUA SHOULD update accounts[addr]
according to the contents of the decrypted message, as discussed in
Accounts controlled by the MUA.

See Example Setup Message.

Since Level 1 only recommends looking for a Setup Message when
accounts[addr].secret_key is unset, some Level 1 MUAs might not
look for or handle Setup Messages for an already-configured account at
all. If two such MUAs share an account, and both MUAs have somehow
enabled Autocrypt on it independently without discovery of a Setup
Message, they will have different secret keys. This situation is bad
because it may lead to intermittently unreadable mail on either or
both MUAs.

These simple implementations can both keep Autocrypt enabled and avoid
new unreadable mail if the user manually synchronizes secret keys. To
do this, the user must first destroy their local secret
key on one MUA. Afterwards, that MUA can begin
looking for a Setup Message again. A more sophisticated
implementation may offer a more user-friendly way to detect this
situation and resolve it.

User Interface

Ideally, Autocrypt users see very little UI. However, some UI is
inevitable if we want users to be able to interoperate with existing,
non-Autocrypt users.

Message Composition

If an MUA is willing to compose encrypted mail, it SHOULD include some
UI mechanism at message composition time for the user to choose between
encrypted message or cleartext. This may be as simple as a single
checkbox.

If the Autocrypt recommendation is disable for a given message,
the MUA MAY choose to avoid exposing this UI during message
composition at all.

If the Autocrypt recommendation is either available or
encrypt, the MUA SHOULD expose this UI with the recommended default during message composition
to allow the user to make a different decision.

If the Autocrypt recommendation is discourage, then the MUA SHOULD
expose the UI in an unactive state. But if the user chooses to
activate it (e.g., clicking on the checkbox), then the UI should
display a warning to the user and ask them to confirm the choice to
encrypt.

Account Preferences

Level 1 MUAs SHOULD allow the user to disable Autocrypt completely for
each account they control (that is, to set accounts[addr].enabled
to false). For level 1, we expect most MUAs to have Autocrypt
disabled by default. See Disabling Autocrypt for more details.

Helping Users get Started

This section provides recommendations for MUA implementations to help
users start Autocrypt immediately after an account (with the address
addr) was set up.

The MUA SHOULD scan the mailbox for messages sent by the user
(wherever the messages might be) that show evidence of OpenPGP or
Autocrypt usage. It is likely sufficient to only scan the messages
sent during the last 30 days, as it is unlikely that the user
used Autocrypt or OpenPGP actively if no such message was sent in
the recent past.

From the set of all found sent messages, the MUA should
determine the best action to take from the following list of choices.
Earlier choices are better than later ones.

	If an Autocrypt Setup Message was found:

Start a setup process suggesting the user to import the
setup message. If multiple Autocrypt Setup Messages are
found, the most recent message should be preferred.

	If a sent message with an Autocrypt header was found:

Provide guidance for creating an Autocrypt Setup Message
on the MUA that created the message.

	If there is evidence of actively used OpenPGP software
(for example if a secret key is available, some
specific software is installed, etc.) or if encrypted
mails are found:

Inform the user about Autocrypt on <https://autocrypt.org/pgp-users>.

	If no evidence for Autocrypt was found:

Create a key with default settings and without a password in the
background. Set your accounts[addr].prefer_encrypt to
nopreference and start sending Autocrypt headers.

Disabling Autocrypt

Once Autocrypt is enabled for a given account
(accounts[addr].enabled is set to true), the user might choose
to disable it. By default, disabling should only set
accounts[addr].enabled to false, and it SHOULD NOT destroy
accounts[addr].secret_key. This preserves the user’s ability to
read old encrypted e-mails, as well as being able to read encrypted
e-mails that arrive after the user has disabled Autocrypt.

The act of re-enabling Autocrypt after it was disabled SHOULD leave
accounts[addr].secret_key and accounts[addr].public_key
intact, so that the user continues using the same key.

Destroying Secret Key Material

When disabling Autocrypt for an account, a Level 1 MUA MAY offer the
user an opportunity to also destroy the secret key material for that
account. Since Autocrypt clients generally do not discuss secret keys
with users, a MUA offering this choice should use a phrase like
“destroy access to encrypted messages”, rather than referring to
“keys” or “key material”.

A MUA that allows the user this opportunity SHOULD clearly indicate to
the user that the destruction of this secret key material will leave
them unable to read any new messages that arrive encrypted. A MUA
that only retains the encrypted form of archived messages SHOULD also
indicate to the user that previously-received encrypted messages will
become unreadable as well. Note that for some users, this is a
desirable feature: “destroy all messages” is an appropriate action to
take in some circumstances.

If the user selects this option, the MUA MUST clear both
accounts[addr].secret_key and accounts[addr].public_key.

Appendix

E-mail Address Canonicalization

To keep consistent state refering to different but practically equivalent
writings of an e-mail address, a MUA SHOULD canonicalize e-mail
addresses when comparing them (for example for using an e-mail
address as an index key).

Canonicalizing the domain part (the part after the @): A MUA SHOULD canonicalize the domain part using IDNA2008 Punycode conversion to ASCII [https://tools.ietf.org/html/rfc5891.html#section-4.4].

Canonicalizing the local part (the part before the @):
Autocrypt-capable MUAs that encounter a peer’s e-mail address where
the local part appears to be valid UTF-8 SHOULD canonicalize the local
part by making it all lower-case using the “empty” locale (see W3C’s
discussion on Case folding [https://www.w3.org/International/wiki/Case_folding] for more
details).

SMTP specifications [https://tools.ietf.org/html/rfc5321.html#section-2.3.11] say the local part
is technically domain-specific, and byte-for-byte arbitrarily
sensitive. In practice, nearly every e-mail domain treats the local
part of the address as a case-insensitive string. That is, while it
is permitted by the standards, John@example.org is very unlikely
to deliver to a different mailbox than john@example.org.

An Autocrypt-capable MUA that is configured to use an account that has
an e-mail address whose local part is not a valid UTF-8 string, or who
cannot receive mail at the canonicalized form of their associated
address SHOULD NOT enable Autocrypt on that e-mail account without an
additional warning to the user.

Other canonicalization efforts are considered for later specification
versions.

Example Autocrypt headers

Alice sends Bob a simple, unencrypted e-mail message that lets Bob
write back encrypted if Bob is using an Autocrypt-enabled MUA:

Delivered-To: <bob@autocrypt.example>
From: Alice <alice@autocrypt.example>
To: Bob <bob@autocrypt.example>
Subject: an Autocrypt header example using RSA 3072 key
Autocrypt: addr=alice@autocrypt.example; prefer-encrypt=mutual; keydata=
 mQGNBFn+zzUBDADBo2D+WUbm3lN1lXtQTxLhxVADIIMLK1dFUgu5w1KAMrW0x9x27cRNxzVrTfiv
 2FiwThUHZmJBFai8HtsMvn/svrCPeGPvkjTDMCWZaEEc5/g51Uyszjf6fUsGXsC9tUcva6pGHaTe
 8Iwpz5stKjRKI3U/mPdQpXmaurwzEdvlNWNi9Ao2rwWV+BK3J/98gBRFT8W6gv+T/YGXVrqXMoMM
 KLTFze2uyO0ExJkhI64upJzD0HUbGjElYdeSWz7lYhQ2y5cmnWPfrnOxiOCVyKrgBulksda5SIjE
 qCJCVYprX/Wvh5feRXYftWVQUMeo6moNOhTM9X+zQJPWWuWivOJpamIuUCziEycX8RtRo0yAOPwc
 /vIppoxAMusQCVn15YwVECngzXUi3EB72wXJ4411VfzPCSlgVNZV7Yqx1lW4PMRcFB2oblO25rk3
 GDlmqEVcG1Hh4FtEBkmwVjiv4duN0E33r2Yf8OsFAkKnRCRllYn8409DaJGou41hEV+LAsUAEQEA
 AbQyYTFlYmQ2OGQtOGM3Ny00NWI4LWIwMzMtOGNhYzNmN2QyMDZkQGF1dG9jcnlwdC5vcmeJAc4E
 EwEIADgWIQTmBGjORNd8P86f0HJx28Vlf95lpwUCWf7PNQIbAwULCQgHAgYVCAkKCwIEFgIDAQIe
 AQIXgAAKCRBx28Vlf95lp3C/C/9tthB5Q6oyyjERPZmRY3V8n60wd0h35uLqQfcb51UYKZ3j+61n
 ckz2iB9LrRxY9Q31WozMqza+Jze4/g/VYHLlS7Zg0M3pLKzbSEyDvZVT523BVFsCQwjkq679JGZ/
 xPzJOPab1udXFsKPEfNvzKgK+x0a4Q8b03SemL5mmGPBrnuCza/nFhevUrQbbtuUzhBnMFBsPKvz
 WUTKHEgIDLqz+8auPOQZSbF2D/1BEvtbobdgQi+YJLaj77/pURR1kp7su51IffTs0qgMMJh8jwQY
 lMQMhozy43eqT1y9QE+DH9RBAYpcRCmTcBE5Z8apnWpH/axfCDjboWwD62gN0dawc7WEQ+rdgu8W
 Tocoo4A6iyCk6Xs59mOGE0gsCdZvzKruJOYqvERzeDibDc3hXDjOE82okBjQhsOVCK3a7uyAIZnc
 z9Kovi0CkQ9d3EuG8297HSf1/PupsiFgHBsJzmZ549+ZHLXlZ5ss4aj9Hpe7bCk8oUUL+A61+nNY
 VsVDSO25AY0EWf7PNQEMANI3/DkEjghl0SgsbzqHaUAohh+GSMXUD7dQn28ZGxR/2Y5wu7O5MdkP
 MKIrsyQowSeGn18rnM1PxnRGOrX+QnVZTdk73VeMID6nM1TTfv5gmkjcb6NphGPeOTZyJIbjgQxE
 z2LUbhFLseRS/6COF5q6Tj+TJFSPbDs5kVm8LqAra2vdvdpxV69WP2FfzwHIKTzxEwnDKc3rp7yE
 I52qz8xMTCO+IkBIc9rwdj7TqJxMOTZQdfpY/ltiGwg3lCGYaHuejJzDQlU/X6OCEq/WT7/UVqNw
 ZkrsT4uG9BFGW+WOXuOpgA4v0YQ62XQAotVNXUY10XFrSb6DTr6vYjd0Lk/z7icAX5uzjlfJN3TV
 qJxS0pDWtfYD52B936+mizGR+97uyqEBVNQKww1pvKdZDruiR43O0k63TMO/4cAhXfw7q91/RMGg
 TJX2UC/BGMiePziboP+GHX87hRmAvFCRjQc0KFyxJGbNKID3Kn/RhUrePCAVWI34lSQ0Do5qLlRn
 9QARAQABiQG2BBgBCAAgFiEE5gRozkTXfD/On9BycdvFZX/eZacFAln+zzUCGwwACgkQcdvFZX/e
 ZaeaIwv/WR2LYKlPXe/1sMKfh+iSYeJjvqx15i4OaLumont+btZmpyYDU8sOaMB12oBgQ3sNYaQp
 fkTk/QNw3lbuiROPJeANQzC7Ckj3SDBFoMXyqxmnzhH0P1qvT90VOB061P1aHg7usuU4+MuvLKrg
 vaLtzK4xuiHIzpkTCvtcyNmiS5Qi2guPV32UQ6HccSIEaZO5w+z6a/V0JZ19lVwOnOatUp4DsDHo
 4KfcUKpNUKoUGgkOhLP7DmsqdlnQoKCw4PxnSsg7H5imHKF1Xo/8nh0G5Wl5kpJendiI1ZGy/yES
 jN9i1kKSqL4X+R4PkT9foAootoK3TrLbcyHuxFj5umcUuqqGfsvjhgC/ZIyvvoRf4X0Bnn1h9hpo
 6ZvBoPDM5lJxtUL64Zx5HXLd6CQXGfZfZVeM+ODqQyITGQT+p7uMDiZF42DKiTyJjJHABgiV+J16
 IM4woaGfCwAU+0Vg+JDuf7Ec8iKx5UNDI18PJTTzGVp65Gvz2Mq/CHT/peFNHNqW
Date: Tue, 07 Nov 2017 14:53:50 +0100
Message-ID: <rsa-3072@autocrypt.example>
MIME-Version: 1.0
Content-Type: text/plain

This is an example e-mail with Autocrypt header and RSA 3072 key
as defined in Level 1.

Example Autocrypt Gossip headers

After having received messages with Autocrypt headers from both Bob
and Carol, Alice sends an e-mail to the two of them, with Autocrypt
Gossip headers.

Delivered-To: <bob@autocrypt.example>
From: Alice <alice@autocrypt.example>
To: Bob <bob@autocrypt.example>, Carol <carol@autocrypt.example>
Subject: an Autocrypt Gossip header example
Autocrypt: addr=alice@autocrypt.example; prefer-encrypt=mutual; keydata=
 mQGNBFn+zzUBDADBo2D+WUbm3lN1lXtQTxLhxVADIIMLK1dFUgu5w1KAMrW0x9x27cRNxzVrTfiv
 2FiwThUHZmJBFai8HtsMvn/svrCPeGPvkjTDMCWZaEEc5/g51Uyszjf6fUsGXsC9tUcva6pGHaTe
 8Iwpz5stKjRKI3U/mPdQpXmaurwzEdvlNWNi9Ao2rwWV+BK3J/98gBRFT8W6gv+T/YGXVrqXMoMM
 KLTFze2uyO0ExJkhI64upJzD0HUbGjElYdeSWz7lYhQ2y5cmnWPfrnOxiOCVyKrgBulksda5SIjE
 qCJCVYprX/Wvh5feRXYftWVQUMeo6moNOhTM9X+zQJPWWuWivOJpamIuUCziEycX8RtRo0yAOPwc
 /vIppoxAMusQCVn15YwVECngzXUi3EB72wXJ4411VfzPCSlgVNZV7Yqx1lW4PMRcFB2oblO25rk3
 GDlmqEVcG1Hh4FtEBkmwVjiv4duN0E33r2Yf8OsFAkKnRCRllYn8409DaJGou41hEV+LAsUAEQEA
 AbQyYTFlYmQ2OGQtOGM3Ny00NWI4LWIwMzMtOGNhYzNmN2QyMDZkQGF1dG9jcnlwdC5vcmeJAc4E
 EwEIADgWIQTmBGjORNd8P86f0HJx28Vlf95lpwUCWf7PNQIbAwULCQgHAgYVCAkKCwIEFgIDAQIe
 AQIXgAAKCRBx28Vlf95lp3C/C/9tthB5Q6oyyjERPZmRY3V8n60wd0h35uLqQfcb51UYKZ3j+61n
 ckz2iB9LrRxY9Q31WozMqza+Jze4/g/VYHLlS7Zg0M3pLKzbSEyDvZVT523BVFsCQwjkq679JGZ/
 xPzJOPab1udXFsKPEfNvzKgK+x0a4Q8b03SemL5mmGPBrnuCza/nFhevUrQbbtuUzhBnMFBsPKvz
 WUTKHEgIDLqz+8auPOQZSbF2D/1BEvtbobdgQi+YJLaj77/pURR1kp7su51IffTs0qgMMJh8jwQY
 lMQMhozy43eqT1y9QE+DH9RBAYpcRCmTcBE5Z8apnWpH/axfCDjboWwD62gN0dawc7WEQ+rdgu8W
 Tocoo4A6iyCk6Xs59mOGE0gsCdZvzKruJOYqvERzeDibDc3hXDjOE82okBjQhsOVCK3a7uyAIZnc
 z9Kovi0CkQ9d3EuG8297HSf1/PupsiFgHBsJzmZ549+ZHLXlZ5ss4aj9Hpe7bCk8oUUL+A61+nNY
 VsVDSO25AY0EWf7PNQEMANI3/DkEjghl0SgsbzqHaUAohh+GSMXUD7dQn28ZGxR/2Y5wu7O5MdkP
 MKIrsyQowSeGn18rnM1PxnRGOrX+QnVZTdk73VeMID6nM1TTfv5gmkjcb6NphGPeOTZyJIbjgQxE
 z2LUbhFLseRS/6COF5q6Tj+TJFSPbDs5kVm8LqAra2vdvdpxV69WP2FfzwHIKTzxEwnDKc3rp7yE
 I52qz8xMTCO+IkBIc9rwdj7TqJxMOTZQdfpY/ltiGwg3lCGYaHuejJzDQlU/X6OCEq/WT7/UVqNw
 ZkrsT4uG9BFGW+WOXuOpgA4v0YQ62XQAotVNXUY10XFrSb6DTr6vYjd0Lk/z7icAX5uzjlfJN3TV
 qJxS0pDWtfYD52B936+mizGR+97uyqEBVNQKww1pvKdZDruiR43O0k63TMO/4cAhXfw7q91/RMGg
 TJX2UC/BGMiePziboP+GHX87hRmAvFCRjQc0KFyxJGbNKID3Kn/RhUrePCAVWI34lSQ0Do5qLlRn
 9QARAQABiQG2BBgBCAAgFiEE5gRozkTXfD/On9BycdvFZX/eZacFAln+zzUCGwwACgkQcdvFZX/e
 ZaeaIwv/WR2LYKlPXe/1sMKfh+iSYeJjvqx15i4OaLumont+btZmpyYDU8sOaMB12oBgQ3sNYaQp
 fkTk/QNw3lbuiROPJeANQzC7Ckj3SDBFoMXyqxmnzhH0P1qvT90VOB061P1aHg7usuU4+MuvLKrg
 vaLtzK4xuiHIzpkTCvtcyNmiS5Qi2guPV32UQ6HccSIEaZO5w+z6a/V0JZ19lVwOnOatUp4DsDHo
 4KfcUKpNUKoUGgkOhLP7DmsqdlnQoKCw4PxnSsg7H5imHKF1Xo/8nh0G5Wl5kpJendiI1ZGy/yES
 jN9i1kKSqL4X+R4PkT9foAootoK3TrLbcyHuxFj5umcUuqqGfsvjhgC/ZIyvvoRf4X0Bnn1h9hpo
 6ZvBoPDM5lJxtUL64Zx5HXLd6CQXGfZfZVeM+ODqQyITGQT+p7uMDiZF42DKiTyJjJHABgiV+J16
 IM4woaGfCwAU+0Vg+JDuf7Ec8iKx5UNDI18PJTTzGVp65Gvz2Mq/CHT/peFNHNqW
Date: Tue, 07 Nov 2017 14:56:25 +0100
Message-ID: <gossip-example@autocrypt.example>
MIME-Version: 1.0
Content-Type: multipart/encrypted;
 protocol="application/pgp-encrypted";
 boundary="PLdq3hBodDceBdiavo4rbQeh0u8JfdUHL"

--PLdq3hBodDceBdiavo4rbQeh0u8JfdUHL
Content-Type: application/pgp-encrypted
Content-Description: PGP/MIME version identification

Version: 1

--PLdq3hBodDceBdiavo4rbQeh0u8JfdUHL
Content-Type: application/octet-stream; name="encrypted.asc"
Content-Description: OpenPGP encrypted message
Content-Disposition: inline; filename="encrypted.asc"

-----BEGIN PGP MESSAGE-----

hQGMAypihPateFlyAQv+Mnd0eKclm2/+RU4Qp3zmbQ3+5mHE7p3ZLiwnN7Xk7NXC
rqTEHpAquDEYiXhs4tvmuDH7t+OG1kOPDfG66Cz1cLCwGrLI4AVC6Y5rBze1Ejo6
z3oFto3dmA4F1NTT8I8K6DYEfzmlkuamKcsVTTagkVfX084w1NL1BYJbKnYkLbyt
Nfa6xfunYkvUCD8+ymwBzuPMwhFJt2EicFTTIHklRSu2K+wC1ULx0hSluU+kMLWY
GW4DsMv1+TI8jQJNcI1MetjVwDrBSinKHbzj2bshhLFAQMPBLtRNu7QU+HmjDXrr
QrPgsW64veZe7hxChaqvQ3BAY9EML8+5KfR69AVHvkW5q+m20PPpKrjKhe7w4xj9
avJjSv8dmnNK0NPYdgVL0NjyB6cjWFPq9f7ZjvUwlQIj3wuZS9msSt/8vU91+kq4
HOWLu/cME10r6X9osQjo4XesjJVJTTF35/XraSts5EE/R7VTOmqP/Nw5Y/VO9E1g
kl2nXAnEXVyIY/lv0B1ghQGMA1T/aSXWyfnUAQv8DjK2YiuZa2Ky8NBmoxXp2ZHe
HIuSqXp8Efv0FMjCKa3tfRR9m1a1/e2DkCe/37VW/5kzBhBvUjXLDZ+tkiijw8cy
Gi9vlWinZdaAKyuaO5BU91cGd3YX2JeBvMsQqAPytzlBQPMtqdyyZQsU0hHqbpKJ
nNcrdfS3wX5qJg2DjtRpurjHiNvfLuWMizZ1ZvovXKB/WcpbjERU3XP7Px3sFMIb
8gM8YeZoFG1GUAs8XFW1JjpNDMYX7CyG/wQGQHmNm64P6sNELN+2R6omV0xvalHx
hHXfoYOnjs3AQ16xJoo42s4q+6Fc2PcCSt8OsMO/ZZrPtEILNTG0RXId4ZFl9Jwc
rF/7xP0Bu3WaMtnxO56IaXGpqvy2vRieaexmrWIT6Vy79qq+86G2OqV6oOfZX9FU
bG2YJ77s/S4GveLuHTE/F5LqP/TShBLGxdpKFHoCES0HmvbJ2iXgmB6Xw1rfbZQu
oOe3R919KoymHRdUsQ33b55cv2lrWQt/z5cv82FFhQGMA4BmeZ3vRAbVAQwArIzC
JJvNYTPxX7wz/5IsORyKaYz/IL03hBbdar6ZIcdJ9J9en2vriaxYn4Z7Yl+N+alZ
i9ddTHCjPvV09X6M1LLHXHFn6hpnEn3TAfz2/pSpJYE38E8r8h6036Fkljq+C4fj
dyTdCOVIdkbzlcGyRYQ4ysDlrSNRkLbCj7EJ3lHZ3peA+YgCI0EwDPPUKXEfP96S
xUpSHlxPlZ6Vl26/NS1o/j+d5VAQivCg9+J2oeIT9jM1uGfgur3p2SmES0oFSQJM
eAcYlqLZimlORc0lHRiXkJx4bHO0C99W8qRy+Pj5EIvgI50OFjsljlG6WbKMMab9
odP/nULfxyEaTA+qO6eZYXy/rHFVMTPR7SCR2LGfamptrTA6rfVA5uUrjUOtTTNg
cpgWL5me7asAoy/vz+wDbjDsCI1pJ8M6r0PCtusamMA+/QW8OBbnXnwhFm/SSNeJ
MfS+xcaKUu0OM7JEyFLSE1at3Kp784ToCxgF1SE7D5cD2LDkN2P4g9+K3Gli0uwB
8VSq9pcsynDG/vozmtjGvLLhIoUBPqU03+zVq54osVmhSIS68evdTeDt2lYZiBjG
Ro4cmuqmTPJZFOzdCmzXbJsLiUDbJGlR8L+sn9Q5/FM3R5PTW38gl4y+atS++7Wj
F95QrEAaPCkLrCVVpT6AR6wGr4QjNehnb9Ykt2AcrZ/TcNQkT+P0QaDNoJrkMglD
zuyxpq0NBjku7ZViRBSntDq3bdFpR76wCXPjnBjYYDtrX50aBE2MNwMgRPRkhheP
E67SEKOdKNEzhx3IZP+xy5iQsAXnQKupLcKQ37vn2bLmd7YEAQvm3yvSWlw1ETnG
eP+R3SktF8aZmmdwJnafQZDhWAaeXfhhA7wspWNkPKvWtG9gCHyJbA5uKqC+oK+4
U3lwwwyjleV3JghC8MK/0md467WYiK7UOmEGAV0A+T8Ud0d23Qk1mBROtsftnWTW
iP46TazP1yPe3T8XSk7pzb2zvrUM0lWTktqSSnOL4pvwlKybtZMssKvRuwixZIjo
bXvLvU8i/X4dRRIm6kvGF+Aq4xBCBHswUUsFb+T3Ljkrbi34pUEGeP+rIjj/DWi+
ubtNlhjcNMXfDs6Ropo6IsgiHKTr7Idbuixk98sxmRWrfhfk2BPWEU360Z1znDFe
4rwzrJWLrIc3Vf9I29o7CI0dwvglsdUqQRvY4gumiMHOFcm5VIc+DEwq4HWEYuV7
r5sSs7j3WsuWvCUHETvFve4He1uhhvx9fjpHL8NyQeUFNlz26e08KN+fmbHRUbv6
3fLYPw2lhxW/2usilmLa52COi7XQaOuFdZZsI0ON74ocSXf6UzLiQDeE89SZ573P
PkA6LiPTi6KrqAZzHC4IjmInPvr6SmxZ78g1KsHz/KUFCZPxu9frOn6uhatUb9bS
SmFIuFoH+DLNQtl9Ex/7iyTce7PJiPVAiikqssDV43TwqsS25ncQ+ZPQIwrJyQL9
SRYUiDZs6JQLvr15u1qxJslUPMJFauGxoyJWn9PoOqC6Lbh6Rf0kyezDa8DbaOL5
mL7WNbm7zOHleuAwYCWKGu4oZzO2HIvJyZjRWo8LqCsQgt2hfMZajq5VFYjNFoWT
9CFmsX2nLQnJHMurU3QIRqe/4HJrGGi3t+75aGZdehG+bfJQNMAa21uiu3V7r61s
gE0ocrq34SUiIYN54sDW7BZsQYtgwJNEGUDFTQIjYoqC7GoG04lH4U8NfdrQG8CL
tRE23v0HDUtFPq78nnLP4VooVttby0jcAMf7v6EPx7uC0mBAa5hkBOgEoW/zguEm
EB7Qqo8PmfFvE3hqDRaDVag2Yre9A9xXYXffmfcokBUk41yoW8hFUzMjpHOuiV/S
mPmK7Ztal544VPBVuJAcelQZ5cmfL0oprmJZd1jTltXYZxnzsAwCgRY8LBZC3tUT
lMhXLRUcHsGvLQDZYaCCz3dVwCyNH6lN2vDN6CCU6LHTjgKCs0j0RfWjgqGLH4gV
BfSFtlDYHd3bE8oLgqKkJTAWq8zcbU0xWuuBUJdWV3aGZ/nfc11ifxmOe4HQ2tXR
tsFThrgOrtoaqfoTkUZxOpdpCya03d9nS/sahBtbw9vgaTKZVhBquvYV62V2R4dj
oLHlYrvERwfvTheCqmmiNMfdsfxj+7qOlgFV9iDVGkkg/HfoqTqltsBpcXYmf9VX
WNoX72/I7vJc9EV1K741lM+3KR+5/ikOK8/9ZFS0T4CDd1hPfdPxB2Vp5wu+Brl2
AubRHM6c3LYgeqTtjKZuIW8SjPLwW9RDXgN3tFh7faHRB2v/z7VBWSZ834ZrFPoZ
6lv523AEzyxkcLoyfDK8KlGBaKfYUaj0DUi3fnWYZf06VfcVpjkxftz0e0l0HV+n
Tt/GWaQVrwiUv8DPKaIwMKmhQnqSEtx3+BoxzE7UVJKNpKO82Ebfb6npP+A9qXbE
ie2tjssJ5UM29TkT3AgOZGJf85u7xvdqX+tUxLtK8ArL3mc8arWBa4GzaBHFqffW
bq13FMk8FOQxIRUo3eItmOSLrKmyx51+31bcyzJp7e5BeCeq7fighwvX8dDdrzLy
oR9oTH1EVT3cbzsqCVx9U09zuoL/eY3Girja6EBQJvs6KdT1z6LUx1fbKyMQyJ+D
uKdZNN82d6VPSwlapJvgvAmefyMO4uDygGO2IT1FUBzVqFNq5h79EMFSg1NDIiLx
KIOEXxcLuD+TWAngKbbZvY50qUh7fyNH2r0ic+D8X9nC0chCcVXe8vPV7Fjp2Uwh
Kjqx9c0WDMkegqK54pcaU50KgQpqiGrfeMv+ALepDMwFJOPty85pK+nlHJi2gEqx
NbVwAPkcpj7jV0elKOGN5rDa7038nmlsIiDrDT84otK08KKaxtrMPC7nRrdODSZH
NK+0tjmt7e0PtqH8D0i6BIZvBq4gH1kcOoPmECFMF/NdpCYLt1OPCCTtotKxUWL/
EZ8ZnwxQkMebJrbWFl4b+fcbU4OtlpkzH8uHpcDtNG4j4/uy01+MzvPsYNNbJJbc
0Qogy2T2Ls7YInwcuNrYDvUECRNV4LjefCOHKiI/f/54ViJCDtDLnwRIhg5GFKoz
SE+MLpP9X+hfnA0BkaAf10XmfKNms2RoI90nnAw830pb4o2cjAWGjhfYJpr3PGlo
zrk8fZ0gBz4o0z4bEu3SHntYPyNaLR1bJY8Jx3FUm2N+jlpt2yKf6J055PJgvbA+
33MXJFPLcLjlx3Bhw6MFpC/F0ElUaIKpDdVYUWaoodSblNKse7wJIMvxwEhidxoK
B0+dlM8uY6HgS6vCP3URL4YUW6yuHXRiq3d708d9iITSXeHz4RgraUvReC3sNv6i
ScrZQx1uNt7Em9WHMVInRWWwf77smEgvw027/5LLrdve943MUdVREYPJYeMCeMul
UQpHCZa2+RPq9X7LEzP2k1ge75uzCjPDAtqv11Ro3NnXtZ8CxXHWaCoHlhV3Zbi7
PmI2/VlwRj8gZewuLXShaIDUHsXypFoGig6jIaU6WPyKGFHMtKmTEFpFopPzlOyY
kVH4KbWXcw2mCMElet3tgAiVE4mgeJmULwe0UjfiBFzJuzth9dVKj48I7YFGXpM7
uevgFrh/Z1/y7OsbAjDza3ZDOLt+qEAMRAcTPmuS9i4lafG2sLw9MXvHELTa2NZ1
eN/vx0hQeJFgAZMGKJeav5GpMoEGKRNr2sk5ghv27y9trIqH6FraYFF/qTtQBQ+9
xGTtaLCVCPfPYahfFDSZ2kd4gsMlkHTQB2XNwB4h9p4eQn3ijNb3kdisK8sxp932
ArLUe9C2kdvega+zub9M6wbibYir+1653ojiDDr5130ZdShDS0VncqeyPZb9XPr4
jGzc8zWvp/z8kgTZXLonwteBc8MJ4jSZcd6CEqLKmUOsFQqA3lZiFvyZmq6rfmm0
Yt/yoP8EaOrh19dU9JqPffFh6+UNUGaf2+OL5kmU53bQk1DaQ79XRWP0FINVzrs1
u1z5ZW3tInTo/rkYDYGpWOXkwuW9PPnDN9J5yxmepfVxac86LVmMy5iK9gavjWAB
owk2pB2zm9ETu0Ac/piKmNicgjIcxZPy1JPtx1siZpGPNVu3v57KVBsNlpIuevQj
Q2uY6OUe7ll8Y5cWIgM7sid6vpLfSZqqR48OY4ZPt5qtpAl8pHan4RnqbEkCr9Di
vgZ+VTe8/v7n10NSAJHAbz4YME2JDbVDDZZRSecq1kpIBlwYXplPbGnpPjsTJu8y
+9+KLlV3dAHM9HxhffS4qx8seJhcVZd9WyDBGl3HH06Y2rLcbhyD4DEcvlUOXieN
tzwGF4RxmiCDDGlJDYoZ+4FAi0wADVuzLPXtbfSlw3jVtaMIk8A5rhwOGUO1ePiL
NcaLhiAM6JLDEV/1ykVuMvXQEVSV5vT3MovOWl/v3R9ve6+beGYyzptJ/l5oSooy
IK08XK1YyYnGDMEEnNOYfobCmw+/ctNPwdM5ioWskzUx6ku34G74O49gtRccHnYa
uU7l5VvdDfRwwsrhNyMpVK9IAcamzigskP/SXGzxDCK/jvN/3mc2X9U00JqhewdG
TgajsJr7AFwvj0yXlGsY9SvnaBosQqnvddD0dpvVVQXsLwXHCSngI/3XwFtl5c3u
otHFMzijSmO+JczT5YfOqF7ZYst9Kb62G3MaSF0ymPaSpp1yiDHZH1rVEQdx/+Tx
u+VKA/1SGxLvxcrdIinwlAcDRXAw7XNDMiYaOgOP6dRXF+4U1ysCS78WvvDfmMvB
PFoSPoozuKX6YbIU1drYBu+zQXIgAEUfecGwpqATWS7vXw29bLmvtLDh/rT72KsK
rRXBnLZenyDrJn0ra7re1gWCwm8oZhOeaxhZ+vOZCQOz1R5hOG/A0EVwNAYEm3Kz
VKkKBjGRa3pmA9n4eLQFI4BVAPYQ5Wu+dWDBNul2HVGMAilIGrBYKh3VGTywPdYX
EhN/6BrTDcKnq2Fgvih77ILee1p2RP+8ggdS65kdDIFpYSSe0ticjL/58wwJXk1l
yOOP66h60cG9i5rwOMl7m4KqhnGA8Nzivm38ItDTHPaUKYXsbcXF2d0lCzY8MIIg
VoIALICwX1J91n6MEn2dxIsCYECzJlGfHoKOMRueT0XkIBU1zRfGnS9Qyq7yBY02
jl/v/H8b6tf5oSa/uFblqcq9K4WjOSAH/vQaDmZpHx3xaUg2v2r0mepRVN3HAJVM
vFaFanOJeadCkFzbLBrFRd0l/n3eStm9Gjiz6YW+ubPkfE2VU5zLyixkbg+LHUQs
X1rtdn6Kk5mgECo9fgtpCR6bdWgpRWV3AVShTktvY++EdMK6cWw9lawag5LRX4C2
x5R4tB9nuSYOOwwWaKYZDQNmWTTklfGp4xoI0UeTDAPQm+yJR+1wLAzHfTavVE89
Z3eEWJQKJuGEkE/bWzpfmwm6x7ZkxlOgHHQa6I3lqemNNwXRJxUGxFThkiFv5k1B
2hVIz+a8bAC/2KZlHtF6gPgVV74SiG2DtCsJHv/MRFgUpPt4azoXGI15CvPqRG6Z
yr0ogGX1KlwNyGmuQUk3tDuypoBnurWOw5pVcH3p8DXlToUvYdClhAgMXZVVPDeH
+GNA8gk1wLn3uVQzHqUfJp/ZANmbtu89/kInq3FVbfQfl2OZmfavhwqLHoNTo8eU
CmhK8XVlPlBaMBZcMPlDC7dSF4mYsCkz3apDhrVAcWxJ2K06wV4aWj8I8C7B2Fmw
huM0JZ6yfBUTN/GcJs/NVXRA7HW/PuRktRB35AfplC9w/LlDKNAAOOstpIIG3oSL
xeIfgswUXwyKkSmoKg4wFtYLBfohhVfLsjMZQ4KYcYVN/yW09BwWvvljt1Y7a5Tm
j8RthlRAHmCPLS8AlG+Nhw2DqMWzD4PNGKZw3ymrX63f96ay9aHZtTkKkrA809y1
7aHWVrojj0/03p7boIDjx3hReACEgximebS3EgCw4MDB54+WcGRN7nsXJ3q/YAjH
iOmmaOjMNWZekp42ltKTwOOCS4NbeZlcyb9Z5R4HSH3+VlLdrZW76aafTXN8nU5u
lsYXjzF7wSJurITquBoDxbdbU/toHt4VQ4Q3RcMb5HKVNS0TzeHnXibCGuJwJXK6
4rMh6nwQtEKPYYyGxEG000jCKjXuwRecF24K50maTwJJF2s4Qsbjxu0XOUzCnSyk
Zse2TvX6lsfjdJxlXZ2ouHZWYHPSoHaNX/CNrik5lL6XR52C5fCNY7FB7Krd1ew1
5p31D4irOJUb7x2jAbgiI9ALZGvw+4qdxXY4ifb94gpXNrnO8MOs/MQn+q3sp6Pw
uARQ69T+4TIndTG5G6I5IMmK47+p/PqZW+kCX+T7mmDw/KKzl0uKkxogifGU+mJb
4BVLtBj/V2HqyfjoF9rbE8kZZpOwxMf8I/1M29211Qmz7iLHwf0x50gX+fZIUks/
i09gfWywP+y3WtpNXtglF5m2FtRRfUqK01f05IlCVIOfo6Yt8UPJZ4KFROBn2Z9f
vA2yxe6xEaP3XJrDDrinz30dSEzJ9IYUb9kMxZowVwo+QtiJutkWJCOiX7btjBNT
EKjmyg==
=69xN
-----END PGP MESSAGE-----

--PLdq3hBodDceBdiavo4rbQeh0u8JfdUHL--

Since Alice encrypts messages to herself, the above message can be
decrypted by her private key as well (see the
Example Setup Message for access to her private key)

When decrypted, the encrypted part contains:

Autocrypt-Gossip: addr=bob@autocrypt.example; keydata=
 mQGNBFoBt74BDAC8AMsjPY17kxodbfmHah38ZQipY0yfuo97WUBs2jeiFYlQdunPANi5VMgbAX+H
 Qb8LBKKoUOmJQrONj1EXz5ILEHc/rSlbJjdmCE8cw9X+EN6PW1y9XNx1ohR1OGKjs9cVW87uPmz/
 TkIslmfzVB6wjMIll8ax/Kb3IKr6wQXUT+JvJajWoVDOOD+7FPondqOxITXMEzinJtzqfEY6SB8q
 +bwRP9bMSyGaJl0fxbqdUxU4iVj8b1JpxuhFtvZik8i06avrOPfYmSnqANBOECSmuC3Uf2plIHJR
 Fd8o12j0lzdQQH3EAcG4dAdIuGHzxdLBQSQ8o8HvBDno9epaui42HDHKUji42mf9Bc9DK4wW6Szb
 BGdefacEmowrwn1Ruc3TyFwfNLuM6AB3k0HhOftUz/4tFKWNlDxN/w6xT30GSE2pp21lu9xN1S6X
 GXOstmDX40tgdMIfZVZqzDWfkZLVeKsE7Z/SNcKouS49FdipChdy0FuEi4ua3NBFb8ImK60AEQEA
 AbQyZjJlMDk5ZDQtYmM5Yi00MGM4LWE2NmItMWE1YmM0MjFjYjRhQGF1dG9jcnlwdC5vcmeJAc4E
 EwEKADgCGwMFCwkIBwIGFQoJCAsCBBYCAwECHgECF4AWIQRp5NnH84f8yaNXvfFHTviz1NECaAUC
 WgG34wAKCRBHTviz1NECaLEtDACaozWd0RHFsA8scsp/J63hHmJplmE9eQiei3WTaypWOTwrNXFu
 2evLWETKM2JP5mKHU2EIq55lcXxUxUxVOzFZ6/4pJ7OJh8je9sg8/9aZCGLu+0B9VmTKEtOJRitG
 y+AeosZUAKhPhLWvNwCnN3sjfBEuZ8p1febYy1ZqedA1yzr8F6FinBfAiVPXqVbEOCB9dQ2JVgjA
 U/5joG6jDenTOIReerLFc90n3riZs6AFN8LtgDMjx6GJ45WjnpawEYeUd3jqMwZ5HrPkR3CMM3Kx
 XCv8r6Si9UdXQsFonVb2ZI5narwCQpRLi0FwlvretzSOgKdtYOXDWXpgMw7npS0NqCTyYF8WG+Nq
 Gq4cwKmlSmYYhvsxIwu134CrA5HNvESUaVPHlenRtfajeAHf2KiVx5Wt4tM/RSm+Ls+3U8wKnzGt
 hNcfnmAhHZ4O+45Drmjc/RzWQMGTWLMQd4uEQ79bulcRXrdde+0sRGweBdLACIU9R8meLXUtwFRN
 jY0/OQS5AY0EWgG3vgEMALLuoUYqjHxHWA5rtGWVgN7s36ypU7KLX8gWk0cz15K0j1K6x+RAQfq0
 IkcMekC5ShdIt4B7P8+dwWPK75VsTnPk8mlm/QurSNx6KMpBDsr6qy3S6u8C8JicNgutEA3s3nAE
 fkvnMmqzp9Z+g8BI5ZUjQAahlW3Qj7g/QKFHhSrYU/7TXGn7o9VvpvKF5HqLdhmpPWI/pUrO2sK5
 48R8q8MPXa9fdbE3edYWmAwMP69wYbyC2aW2OnKyI/jfcjiMDabGTSDysCmyJ2F5NU9gluOac6qE
 CVCmC8LI2ddQp+h4A8QcVVRsvxYGg25d9Ii5dJVRupKTWWEy7Xak5xEECeEZC78y7HAsaA39M9JM
 zsLD/szyrVuo7gXzgyoZJNQ6O+b+GrRVJEikrUTddbLaPq/v3hYZaGg3ECuBOy2ISf1OeC7S6ObF
 jrSQ9WmIG6s5r2IjOaPX++9xrqh9uUAeEgO9dtDBMfEtW8X6buL9uSXM16z5z6E8L1BqGG4x56OI
 owARAQABiQG2BBgBCgAgFiEEaeTZx/OH/MmjV73xR074s9TRAmgFAloBt74CGwwACgkQR074s9TR
 Amg7YAv/cv5Yt3Ja/flXuFhk+TU6WMvz0ehbMIIegW42aW69k78vtEnhwZEYfvE0Vn8YO2/s+n8q
 cimkJFm0TNYnmybO6lbCtJG03UsJ84H0zB2L5ws8hTfTHy3xqBqaz7hBxki9oK1rIcSeSPfbGa48
 O8w1+FQswFht0L4BTCd/4OfdwLVWFPVgjk/UZn9vMKxMgtN9+VJ72hwKU/Rf3PnWI6DIKM6MA50a
 YUHxZjYR2KBmq6LJ91rdJ+WUBV7EB2HwtCsx/6kA5gy4ZLQLhrhQz9fS5sjCwFH4mg0i3qTRGxWx
 UwKVvwExHYbqvcEQvWw/l3PO6eNJd2qG1Y6uAI0K8Un3UmFeVRQBNmFyX52GqJvMtPdXcawrj081
 Mq1XoBRs6qW+WpX8Uj11mu22c57BTUXJRbRr4TnTuuOQmT0egwFDe3x8vHSFmcf9OzG8iKR9ftUE
 +F2ewrzzmm3XY8hy7QeUgBfClZVA6A3rsX4gGawjDo6ZRBbYwckINgGX/vQk6rGs
Autocrypt-Gossip: addr=carol@autocrypt.example; keydata=
 mQGNBFoBt8oBDADGqfZ6PqW05hUEO1dkKm+ixJXnbVriPz2tRkAqT7lTF4KBGitxo4IPv9RPIjJR
 UMUo89ddyqQfiwKxdFCMDqFDnVRWlDaM+r8sauNJoIFwtTFuvUpkFeCI5gYvneEIIbf1r3Xx1pf5
 sLzaERhrHMZMG2farrA+IBymPf/BRdcE3rkUU95ssna51/aEEA/YrCFAwcGq7yW70OmF1Km/SiCZ
 V4/m0fae9+Xw+elWMb+Mav7xL1vbqGIIPVr0bZgg8rr4qnJeK/Nx9OvFDD/TepcUfWWUTd8mFYdE
 P/2OJs5WGLjlQKUK7LNLDix7deGVhriugVGMsDn5BToj0EXlqi1khOGX2PGz/E+KOWBMnUdU7M1B
 qeCfKIIDtwCx3bkLd+eRAvF7UPQ+nZV8c/BvDJSGL7Mak3wrd9P2YxmSFditPReemtGHsSE0KdJ7
 Cbg5w4LqD9nTv2CETwFsZeP2YABqLe31d1fKEsxTJahVTmTWMkBSTaAmtTmbU2tZsr6nJJsAEQEA
 AbQyNDRkYTliODUtZDgwYS00NmQzLWJjMGUtOTM2ZWMxN2Y5YWZkQGF1dG9jcnlwdC5vcmeJAc4E
 EwEKADgCGwMFCwkIBwIGFQoJCAsCBBYCAwECHgECF4AWIQRNY57MDS/rhzDQVtfBq7jfn25RMgUC
 WgG3/wAKCRDBq7jfn25RMsNkDACs+o9B41TQlTfx+vChiw2KNdlVGCFFSp2TwuiUjkqpLXHwk34N
 pFAbiAUgNNg80Wh9Jkv7b0KX1+eapmkMbNpHWN7u2bMxjerKvp1uuuZNSYGB6YYDDQJrhUariEFm
 eYNMV0r3NGKihfM41+E9rvbrUs4AIWdGn5Wx9mM78XzGy2WSxuI0fRN+zJ5dYphVI+VM8IR5Ah8f
 b/g7c9Vttc1h3ICEuOkxJBcvSGafSc+KVj8SrsAjnh1vRD/RBwQmWN7Lay0+9GIWG7U1xLm5LjWb
 0vZ+9giGbZuzuKUtvAu05j6pxdVdNn2yXYKvM6RNTFrnzRZ0JSuB7JmcS8xUvJhl1Xk+lLa+x1eS
 r5URQJ7weoqSffKyCojFMd+l3tfv3lfhCk+9VYqnxAq817ooTeRYH1rXn6vI5qxWjYqpF4Av+yiy
 77lj8ES7wRfTSmvHblZHYehr20kQr2ibRiv28XdOvxh5UDU4joNvV7btK+uQM0fqgdpPQd6RQQ97
 BjJxI/W5AY0EWgG3ygEMAL2AepcoX8fAdRuyajftxM+9PBiARIu5Nvf8rVbI87+qvENEXoDWfT2I
 /iGskpY+5KtnYnDfqo8ut/DgHg53Ea6gtdr1z6+FibmmoTXm81tXnTIMf2WhHMq/P343bHRWYqh4
 V3qes1cAzugp8DF8sE4Jte1rCksRjzAWjlBD2X3g2WWSx2wZT4LsIAuDXW0xXSrlVzg8hSK4Xq+4
 6KxaRzG0H+N91X8mjlQMTV16aX5WVI6Rk8WDxpAmBny1CbKlUu/sRhN40Td3NMQj7bkpcnXeeceO
 /JVbgLEvARG5mj14BWJMSdgXoI12o6/v7xPh+b3cpc7+W6zApvwyhDLaizHjDeS1SqT/BeeIQqiw
 4G75zwBkD3jLRPr/meO/z6J99hQVZYCnIQtZfxw4dZ6teJ1W7rfkn9BiX1dG94xi2poWR0T4TPjP
 TAFTDSzWdLsPJvklb0/+nhHuGeYzTVEW7Y0yIZZXE5rVmTcuCpFPv+M6VrFfnlCdb5iSJZ341Ol9
 owARAQABiQG2BBgBCgAgFiEETWOezA0v64cw0FbXwau4359uUTIFAloBt8oCGwwACgkQwau4359u
 UTKySwv/caLupPaC7kudaEEWlwlY1KbrKAwPeS0RYIYaPGnrgDFj8e9ThaxMaogD8JRdJ35kZedm
 wInRKvwSCE9NydkJNGBbUkXqInnnuqgq0nFELdwJkfk8+sOhnXDoCrUkAoS6IbUqQ9ua9gFF5kmj
 +jKhwMnRR90k5refGrpp9C6lDTxGSOkNqt2Ca7/O6oBovckRNQln75xR04ikvBF9o3VZcfSyDxR+
 eNEb2fMmp66vda8KYncvhBMC3Gi+ablNCfbMP9Lax+pzAB2xb1USBxQcJzDQBmhYLBESAx6IEDne
 c6d9sMH9Y3GPq4aS4M9gFVCCVv+nUGzkYYEordIot2dKTPRQi2Cz//XXrVNglpXhdtDUgh0mKBuM
 6dYFLBDqcDrPcQabyGUJZyHknkQJkto0aSNmHqasjuVhS2N7UuHI+ILMUlSQpBQaCirTTz+CpwKU
 Iy9qsd5eg/4Vvc2AezUv+A6p2DUNHgFMX2FfDus+EPO0wgeWbNaV601aE7UhyugB
Content-Type: text/plain

Hi Bob and Carol,

I wanted to introduce the two of you to each other.

I hope you are both doing well! You can now both "reply all" here,
and the thread will remain encrypted.

Regards,
Alice

Example Copy when a Reply can’t be Encrypted

The message this is a reply to was sent encrypted, but this reply is
unencrypted because I don't yet know how to encrypt to
``bob@example.com``. If ``bob@example.com`` would reply here, my
future messages in this thread will be encrypted.

Example User Interaction for Setup Message Creation

The Setup Code shown in this example can be used with
Example Setup Message below.

You'll need to use this Setup Code in your other e-mail app to use
the Autocrypt Setup Message:

 1742-0185-6197-
 1303-7016-8412-
 3581-4441-0597

Example User Interaction for Setup Message Receipt

To initiate the import of the Autocrypt Setup Message, the MUA
can display a message like the example below:

ExampleMail has detected an Autocrypt Setup Message created by one
of the other apps you use to access "alice@autocrypt.example". By
importing the settings from this message, you can start using
Autocrypt here in ExampleMail too!

Please enter the Setup Code displayed by your other e-mail app to
proceed:

 17__ - ____ - ____ -
 ____ - ____ - ____ -
 ____ - ____ - ____

 [Cancel] [Import Settings]

Example Setup Message

Alice’s MUA sends her a Setup Message after showing her a Setup Code
(the code used here is the one from Example User Interaction for Setup Message Creation). The
generated message looks like this:

Date: Sun, 05 Nov 2017 08:44:38 GMT
To: alice@autocrypt.example
From: alice@autocrypt.example
Autocrypt-Setup-Message: v1
Subject: Autocrypt Setup Message
Content-type: multipart/mixed; boundary="Y6fyGi9SoGeH8WwRaEdC6bbBcYOedDzrQ"

--Y6fyGi9SoGeH8WwRaEdC6bbBcYOedDzrQ
Content-Type: text/plain

This message contains all information to transfer your Autocrypt
settings along with your secret key securely from your original
device.

To set up your new device for Autocrypt, please follow the
instuctions that should be presented by your new device.

You can keep this message and use it as a backup for your secret
key. If you want to do this, you should write down the Setup Code
and store it securely.
--Y6fyGi9SoGeH8WwRaEdC6bbBcYOedDzrQ
Content-Type: application/autocrypt-setup
Content-Disposition: attachment; filename="autocrypt-setup-message.html"

<html><body>
<p>
This is the Autocrypt setup file used to transfer settings and
keys between clients. You can decrypt it using the Setup Code
presented on your old device, and then import the contained key
into your keyring.
</p>

<pre>
-----BEGIN PGP MESSAGE-----
Passphrase-Format: numeric9x4
Passphrase-Begin: 17

wy4ECQMI0jNRBQfVKHVg1+a2Yihd6JAjR9H0kk3oDVeX7nc4Oi+IjEtonUJt
PQpO0tPWASWYuYvjZSuTz9r1yZYV+y4mu9bu9NEQoRlWg2wnbjoUoKk4emFF
FweUj84iI6VWTCSRyMu5d5JS1RfOdX4CG/muLAegyIHezqYOEC0Z3b9Ci9rd
DiSgqqN+/LDkUR/vr7L2CSLN5suBP9Hsz75AtaV8DJ2DYDywYX89yH1CfL1O
WohyrJPdmGJZfdvQX0LI9mzN7MH0W6vUJeCaUpujc+UkLiOM6TDB74rmYF+V
Z7K9BXbaN4V6dyxVZfgpXUoZlaNpvqPJXuLHJ68umkuIgIyQvzmMj3mFgZ8s
akCt6Cf3o5O9n2PJvX89vuNnDGJrO5booEqGaBJfwUk0Rwb0gWsm5U0gceUz
dce8KZK15CzX+bNv5OC+8jjjBw7mBHVt+2q8LI+G9fEy9NIREkp5/v2ZRN0G
R6lpZwW+8TkMvJnriQeABqDpxsJVT6ENYAhkPG3AZCr/whGBU3EbDzPexXkz
qt8Pdu5DrazLSFtjpjkekrjCh43vHjGl8IOiWxKQx0VfBkHJ7O9CsHmb0r1o
F++fMh0bH1/aewmlg5wd0ixwZoP1o79he8Q4kfATZAjvB1xSLyMma+jxW5uu
U3wYUOsUmYmzo46/QzizFCUpaTJ4ZQZY1/4sflidsl/XgZ0fD1NCrdkWBNA1
0tQF949pEAeA4hSfHfQDNKAY8A7fk8lZblqWPkyu/0x8eV537QOhs89ZvhSB
V87KEAwxWt60+Eolf8PvvkvB/AKlfWq4MYShgyldwwCfkED3rv2mvTsdqfvW
WvqZNo4eRkJrnv9Be3LaXoFyY6a3z+ObBIkKI+u5azGJYge97O4E2DrUEKdQ
cScq5upzXity0E+Yhm964jzBzxnA52S4RoXzkjTxH+AHjQ5+MHQxmRfMd2ly
7skM106weVOR0JgOdkvfiOFDTHZLIVCzVyYVlOUJYYwPhmM1426zbegHNkaM
M2WgvjMp5G+X9qfDWKecntQJTziyDFZKfd1UrUCPHrvl1Ac9cuqgcCXLtdUS
jI+e1Y9fXvgyvHiMX0ztSz1yfvnRt34508G9j68fEQFQR/VIepULB5/SqKbq
p2flgJL48kY32hEw2GRPri64Tv3vMPIWa//zvQDhQPmcd3S4TqnTIIKUoTAO
NUo6GS9UAX12fdSFPZINcAkNIaB69+iwGyuJE4FLHKVkqNnNmDwF3fl0Oczo
hbboWzA3GlpR2Ri6kfe0SocfGR0CHT5ZmqI6es8hWx+RN8hpXcsRxGS0BMi2
mcJ7fPY+bKastnEeatP+b0XN/eaJAPZPZSF8PuPeQ0Uc735fylPrrgtWK9Gp
Wq0DPaWV/+O94OB/JvWT5wq7d/EEVbTck5FPl4gdv3HHpaaQ6/8G89wVMEXA
GUxB8WuvNeHAtQ7qXF7TkaZvUpF0rb1aV88uABOOPpsfAyWJo/PExCZacg8R
GOQYI6inV5HcGUw06yDSqArHZmONveqjbDBApenearcskv6Uz7q+Bp60GGSA
lvU3C3RyP/OUc1azOp72MIe0+JvP8S5DN9/Ltc/5ZyZHOjLoG+npIXnThYwV
0kkrlsi/7loCzvhcWOac1vrSaGVCfifkYf+LUFQFrFVbxKLOQ6vTsYZWM0yM
QsMMywW5A6CdROT5UB0UKRh/S1cwCwrN5UFTRt2UpDF3wSBAcChsHyy90RAL
Xd4+ZIyf29GIFuwwQyzGBWnXQ2ytU4kg/D5XSqJbJJTya386UuyQpnFjI19R
uuD0mvEfFvojCKDJDWguUNtWsHSg01NXDSrY26BhlOkMpUrzPfX5r0FQpgDS
zOdY9SIG+y9MKG+4nwmYnFM6V5NxVL+6XZ7BQTvlLIcIIu+BujVNWteDnWNZ
T1UukCGmFd8sNZpCc3wu4o/gLDQxih/545tWMf0dmeUfYhKcjSX9uucMRZHT
1N0FINw04fDdp2LccL+WCGatFGnkZVPw3asid4d1od9RG9DbNRBJEp/QeNhc
/peJCPLGYlA1NjTEq+MVB+DHdGNOuy//be3KhedBr6x4VVaDzL6jyHu/a7PR
BWRVtI1CIVDxyrEXucHdGQoEm7p+0G2zouOe/oxbPFoEYrjaI+0e/FN3u/Y3
aG0dlYWbxeHMqTh2F3lB/CFALReeGqqN6PwRyePWKaVctZYb6ydf9JVl6q1/
aV9C5rf9eFGqqA+OIx/+XuAG1w0rwlznvtajHzCoUeA4QfbmuOV/t5drWN2N
PCk2mJlcSmd7lx53rnOIgme1hggchjezc4TisL4PvSLxjJ7DxzktD2jv2I/Q
OlSxTUaXnGfIVedsI0WjFomz5w9tZjC0B5O5TpSRRz6gfpe/OC3kV7qs1YCS
lJTTxj1mTs6wqt0WjKkN/Ke0Cm5r7NQ79szDNlcC0AViEOQb3U1R88nNdiVx
ymKT5Dl+yM6acv53lNX6O5BH+mpP2/pCpi3x+kYFyr4cUsNgVVGlhmkPWctZ
trHvO7wcLrAsrLNqRxt1G3DLjQt9VY+w5qOPJv6s9qd5JBL/qtH5zqIXiXlM
IWI9LLwHFFXqjk/f6G4LyOeHB9AqccGQ4IztgzTKmYEmFWVIpTO4UN6+E7yQ
gtcYSIUEJo824ht5rL+ODqmCSAWsWIomEoTPvgn9QqO0YRwAEMpsFtE17klS
qjbYyV7Y5A0jpCvqbnGmZPqCgzjjN/p5VKSNjSdM0vdwBRgpXlyooXg/EGoJ
ZTZH8nLSuYMMu7AK8c7DKJ1AocTNYHRe9xFV8RzEiIm3zaezxa0r+Fo3nuTX
UR9DOH0EHaDLrFQcfS5y1iRxY9CHg0N2ECaUzr/H7jck9mLZ7v9xisj3QDuv
i0xQbC4BTxMEBGTK8fOcjHHOABOyhqotOreERqwOV2c1OOGUQE8QK18zJCUd
BTmQZ709ttASD7VWK4TraOGczZXkZsKdZko5T6+6EkFy9H+gwENLUG9zk0x9
2G5zicDr6PDoAGDuoB3B3VA8ertXTX7zEz30N6m+tcAtPWka0owokLy3f0o7
ZdytBPkly8foTMWKF2vsJ8K4Xdn/57jJ2qFku32xmtiPIoa6s8wINO06AVB0
0/AuttvxcPr+ycE+9wRZHx6JBujAqOZztU3zu8WZMaqVKb7gnmkWPiL+1XFp
2+mr0AghScIvjzTDEjigDtLydURJrW01wXjaR0ByBT4z8ZjaNmQAxIPOIRFC
bD0mviaoX61qgQLmSc6mzVlzzNZRCKtSvvGEK5NJ6CB6g2EeFau8+w0Zd+vv
/iv6Img3pUBgvpMaIsxRXvGZwmo2R0tztJt+CqHRvyTWjQL+CjIAWyoHEdVH
k7ne/q9zo3iIMsQUO7tVYtgURpRYc2OM1IVQtrgbmbYGEdOrhMjaWULg9C7o
6oDM0EFlCAId3P8ykXQNMluFKlf9il5nr19B/qf/wh6C7DFLOmnjTWDXrEiP
6wFEWTeUWLchGlbpiJFEu05MWPIRoRd3BHQvVpzLLgeBdxMVW7D6WCK+KJxI
W1rOKhhLVvKU3BrFgr12A4uQm+6w1j33Feh68Y0JB7GLDBBGe11QtLCD6kz5
RzFl+GbgiwpHi3nlCc5yiNwyPq/JRxU3GRb62YJcsSQBg+CD3Mk5FGiDcuvp
kZXOcTE2FAnUDigjEs+oH2qkhD4/5CiHkrfFJTzv+wqw+jwxPor2jkZH2akN
6PssXQYupXJE3NmcyaYT+b5E6qbkIyQj7CknkiqmrqrmxkOQxA+Ab2Vy9zrW
u0+Wvf+C+SebWTo3qfJZQ3KcASZHa5AGoSHetWzH2fNLIHfULXac/T++1DWE
nbeNvhXiFmAJ+BRsZj9p6RcnSamk4bjAbX1lg2G3Sq6MiA1fIRSMlSjuDLrQ
8xfVFrg7gfBIIQPErJWv2GdAsz76sLxuSXQLKYpFnozvMT7xRs84+iRNWWh9
SNibbEjlh0DcJlKw49Eis/bN22sDQWy4awHuRvvQetk/QCgp54epuqWnbxoE
XZDgGBBkMc3or+6Cxr3q9x7J/oHLvPb+Q5yVP9fyz6ZiSVWluMefA9smjJ/A
KMD84s7uO/8/4yug+swXGrcBjHSddTcy05vm+7X6o9IEZKZb5tz7VqAfEcuk
QNPUWCMudhzxSNr4+yVXRVpcjsjKtplJcXC5aIuJwq3C5OdysCGqXWjLuUu1
OFSoPvTsYC2VxYdFUcczeHEFTxXoXz3I0TyLPyxUNsJiKpUGt/SXmV/IyAx+
h6pZ2OUXspC9d78DdiHZtItPjEGiIb678ZyMxWPE59XQd/ad92mlPHU8InXD
yTq6otZ7LwAOLGbDR9bqN7oX8PCHRwuu30hk2b4+WkZn/WLd2KCPddQswZJg
Qgi5ajUaFhZvxF5YNTqIzzYVh7Y8fFMfzH9AO+SJqy+0ECX0GwtHHeVsXYNb
P/NO/ma4MI8301JyipPmdtzvvt9NOD/PJcnZH2KmDquARXMO/vKbn3rNUXog
pTFqqyNTr4L5FK86QPEoE4hDy9ItHGlEuiNVD+5suGVGUgYfV7AvZU46EeqO
rfFj8wNSX1aK/pIwWmh1EkygPSxomWRUANLX1jO6zX9wk2X80Xn9q/8jot1k
Vl54OOd7cvGls2wKkEZi5h3p6KKZHJ+WIDBQupeJbuma1GK8wAiwjDH59Y0X
wXHAk7XA+t4u0dgRpZbUUMqQmvEvfJaCr4qMlpuGdEYbbpIMUB1qCfYU9taL
zbepMIT+XYD5mTyytZhR+zrsfpt1EzbrhuabqPioySoIS/1+bWfxvndq16r0
AdNxR5LiVSVh8QJr3B/HJhVghgSVrrynniG3E94abNWL/GNxPS/dTHSf8ass
vbv7+uznADzHsMiG/ZlLAEkQJ9j0ENJvHmnayeVFIXDV6jPCcQJ+rURDgl7z
/qTLfe3o3zBMG78LcB+xDNXTQrK5Z0LX7h17hLSElpiUghFa9nviCsT0nkcr
nz302P4IOFwJuYMMCEfW+ywTn+CHpKjLHWkZSZ4q6LzNTbbgXZn/vh7njNf0
QHaHmaMNxnDhUw/Bl13uM52qtsfEYK07SEhLFlJbAk0G7q+OabK8dJxCRwS3
X9k4juzLUYhX8XBovg9G3YEVckb6iM8/LF/yvNXbUsPrdhYU9lPA63xD0Pgb
zthZCLIlnF+lS6e41WJv3n1dc4dFWD7F5tmt/7uwLC6oUGYsccSzY+bUkYhL
dp7tlQRd5AG/Xz8XilORk8cUjvi6uZss5LyQpKvGSU+77C8ZV/oS62BdS5TE
osBTrO2/9FGzQtHT+8DJSTPPgR6rcQUWLPemiG09ACKfRQ/g3b9Qj0upOcKL
6dti0lq7Aorc39vV18DPMFBOwzchUEBlBFyuSa4AoD30tsoilAC3qbzBwu3z
QLjmst76HEcWDkxgDAhlBz6/XgiVZsCivn7ygigmc2+hNEzIdDsKKfM9bkoe
3uJzmmsv8Bh5ZEtfGoGNmu/zA7tgvTOCBeotYeHr2O6pLmYb3hK+E/qCBl14
8pK4qYrjAlF+ZMq9BzXcaz5mRfKVfAQtghHOaNqopBczSE1bjFF6HaNhIaGa
N8YdabNQG7mLI/fgBxJfkPl6HdIhEpctp4RURbSFhW+wn0o85VyHM6a+6Vgj
NrYmhxPZ6N1KN0Qy76aNiw7nAToRRcOv87uZnkDIeVH8mP/0hldyiy/Y97cG
QgOeQHOG27QW57nHhqLRqvf0zzQZekuXWFbqajpaabEcdGXyiUpJ8/ZopBPM
AJwfkyA2LkV946IA4JV6sPnu9pYzpXQ4vdQKJ6DoDUyRTQmgmfSFGtfHAozY
V9k0iQeetSkYYtOagTrg3t92v7M00o/NJW/rKX4jj2djD8wtBovOcv4kxg4Z
o58Iv94ROim48XfyesvSYKN1xqqbXH4sfE6b4b9pLUxQVOmWANLK9MK8D+Ci
IvrGbz5U5bZP6vlNbe9bYzjvWTPjaMrjXknRTBcikavqOfDTSIVFtT4qvhvK
42PpOrm0qdiLwExGKQ9FfEfYZRgEcYRGg7rH3oNz6ZNOEXppF3tCl9yVOlFb
ygdIeT3Z3HeOQbAsi8jK7o16DSXL7ZOpFq9Bv9yzusrF7Eht/fSEpAVUO3D1
IuqjZcsQRhMtIvnF0oFujFtooJx9x3dj/RarvEGX/NzwATZkgJ+yWs2etruA
EzMQqED4j7Lb790zEWnt+nuHdCdlPnNy8RG5u5X62p3h5KqUbg9HfmIuuESi
hwr6dKsVQGc5XUB5KTt0dtjWlK5iaetDsZFuF5+aE0Xa6PmiQ2e7ZPFyxXmO
T/PSHzobx0qClKCu+tSWA1HDSL08IeoGZEyyhoaxyn5D9r1Mqg101v/iu59r
lRRs+plAhbuq5aQA3WKtF1N6Zb5+AVRpNUyrxyHoH36ddR4/n7lnIld3STGD
RqZLrOuKHS3dCNW2Pt15lU+loYsWFZwC6T/tAbvwhax+XaBMiKQSDFmG9sBw
TiM1JWXhq2IsjXBvCl6k2AKWLQOvc/Hin+oYs4d7M9mi0vdoEOAMadU/+Pqn
uZzP941mOUV5UeTCCbjpyfI7qtIi3TH1cQmC2kG2HrvQYuM6Momp//JusH1+
9eHgFo25HbitcKJ1sAqxsnYIW5/jIVyIJC7tatxmNfFQQ/LUb2cT+Jowwsf4
bbPinA9S6aQFy9k3vk07V2ouYl+cpMMXmNAUrboFRLxw7QDapWYMKdmnbU5O
HZuDz3iyrm0lMPsRtt/f5WUhZYY4vXT5/dj+8P6Pr5fdc4S84i5qEzf7bX/I
Sc6fpISdYBscfHdv6uXsEVtVPKEuQVYwhyc4kkwVKjZBaqsgjAA7VEhQXzO3
rC7di4UhabWQCQTG1GYZyrj4bm6dg/32uVxMoLS5kuSpi3nMz5JmQahLqRxh
argg13K2/MJ7w2AI23gCvO5bEmD1ZXIi1aGYdZfu7+KqrTumYxj0KgIesgU0
6ekmPh4Zu5lIyKopa89nfQVj3uKbwr9LLHegfzeMhvI5WQWghKcNcXEvJwSA
vEik5aXm2qSKXT+ijXBy5MuNeICoGaQ5WA0OJ30Oh5dN0XpLtFUWHZKThJvR
mngm1QCMMw2v/j8=
=9sJE
-----END PGP MESSAGE-----
</pre></body></html>
--Y6fyGi9SoGeH8WwRaEdC6bbBcYOedDzrQ--

When decrypted with the Setup Code, the encrypted blob at the end
contains:

-----BEGIN PGP PRIVATE KEY BLOCK-----
Autocrypt-Prefer-Encrypt: mutual

lQVYBFn+zzUBDADBo2D+WUbm3lN1lXtQTxLhxVADIIMLK1dFUgu5w1KAMrW0x9x2
7cRNxzVrTfiv2FiwThUHZmJBFai8HtsMvn/svrCPeGPvkjTDMCWZaEEc5/g51Uys
zjf6fUsGXsC9tUcva6pGHaTe8Iwpz5stKjRKI3U/mPdQpXmaurwzEdvlNWNi9Ao2
rwWV+BK3J/98gBRFT8W6gv+T/YGXVrqXMoMMKLTFze2uyO0ExJkhI64upJzD0HUb
GjElYdeSWz7lYhQ2y5cmnWPfrnOxiOCVyKrgBulksda5SIjEqCJCVYprX/Wvh5fe
RXYftWVQUMeo6moNOhTM9X+zQJPWWuWivOJpamIuUCziEycX8RtRo0yAOPwc/vIp
poxAMusQCVn15YwVECngzXUi3EB72wXJ4411VfzPCSlgVNZV7Yqx1lW4PMRcFB2o
blO25rk3GDlmqEVcG1Hh4FtEBkmwVjiv4duN0E33r2Yf8OsFAkKnRCRllYn8409D
aJGou41hEV+LAsUAEQEAAQAL/i2DNOQ7gCR565RmzMvYtheuPIrrnJlmt7WxndNs
8wpyQM6rrige5QWh9a6RrkrIdzoDNEKfwCbLjDQhLXu+l8tBm7axBY4052VcPu4i
eLFuXWPcfE/ejX447kYiRbuhLMjazbP6ujpzQAKAyxiPw6gMUv3eenywVBd33g3D
3BMw2/oRYYguVYoE+4MkqdJtuTX8VL1sll1Gl6vGRQeOJgqY07ptVzj+fWUiP1qw
a/uHEdidebTj0FrYtyYtf6hDB5QNKR6X3Bax+lN82mJI4iGCONbwPzQcTy+LXub6
Q9B5V5qB6P9A3RfwpgeJ0H8y/WfgT9Jfmzq+fwMtaDvftkHA94IlbYWfUuXeIk1f
HqESWo3llLxG59PxxvBtRWWRVACW2Hzz7IcAmhEJAZkEUbGkn5o1qKBrNjX9/4nG
wKfVfXc358KwvRd64pZNzrwjvf7CEhFIcWNeWyFjaG0Cq1isGxanxzUcH+SO1gHx
w7b6e5S1+G19+b1FRItT+wk4yQYA16SgrvPzXj3Mat238BsosX5N+6RL760HjXoU
SC1E0UAgFxVOuWuGMSA/p4lnDkwN8dPkVP+8AXYc0mgsCv/5jOgm9Px1uI2LUGEa
0ZLN3+XFcpxxvEILcfErrwlPPL8lng5cK2NHNNCSpwbEUssiLd11uQO3IzEFrfc0
GMARweu4Vr9pbD5Qrvaea+TATeOlHj2dDE0EJJDEduWiKWhNKG6wp3z4MhGpuUN/
CSywaZiy4V3HapPt5t0ckAVVTaYJBgDl4IGlXHjrEke7aplWHulzsXjtPupyVLBj
RjHvhKZUtPu11ETg3SwX0cdyAy1iCt6rs4Hppl9HYcJE3mWYDfn+B8R3+HGH0HHs
uynnLzx5WD4xsWVFAEluvVjzWcOnQnxamUzHfE+5+8GuTechZjGrPVvZddMg09DV
5QU6tqOUfie3tmJu5KSEdFfzIomL7p3ZNcEcLr6tSdyHq6XalFt27Y6xNdwDad1I
KO+FamsTlGUlQnpINwjj4Ee7ZVJAhd0F/iOFZh4c5nmox8asjOB9wyEvzEu3ilW/
Rh3EDTMLKjWfZ3H8LFxc/vt+T8LDn9paggV4K5OH8v21llhYlUezygVFRRXhtbt1
pvoN/sAnZsvii0PXec8vM7kttX583LyFOphuMFZOrAii47VvYUqzBTrKdggwxdjE
NagvKTQhsGIJWh5ojHROnpOHazDKZcwfYvNzPuRiYUrRsIxxeYak3i3d2Lg6acxA
wnySqvFKOVsQlROYxzbUspVi3X6YBIpwXOSXtDJhMWViZDY4ZC04Yzc3LTQ1Yjgt
YjAzMy04Y2FjM2Y3ZDIwNmRAYXV0b2NyeXB0Lm9yZ4kBzgQTAQgAOBYhBOYEaM5E
13w/zp/QcnHbxWV/3mWnBQJZ/s81AhsDBQsJCAcCBhUICQoLAgQWAgMBAh4BAheA
AAoJEHHbxWV/3mWncL8L/222EHlDqjLKMRE9mZFjdXyfrTB3SHfm4upB9xvnVRgp
neP7rWdyTPaIH0utHFj1DfVajMyrNr4nN7j+D9VgcuVLtmDQzeksrNtITIO9lVPn
bcFUWwJDCOSrrv0kZn/E/Mk49pvW51cWwo8R82/MqAr7HRrhDxvTdJ6YvmaYY8Gu
e4LNr+cWF69StBtu25TOEGcwUGw8q/NZRMocSAgMurP7xq485BlJsXYP/UES+1uh
t2BCL5gktqPvv+lRFHWSnuy7nUh99OzSqAwwmHyPBBiUxAyGjPLjd6pPXL1AT4Mf
1EEBilxEKZNwETlnxqmdakf9rF8IONuhbAPraA3R1rBztYRD6t2C7xZOhyijgDqL
IKTpezn2Y4YTSCwJ1m/Mqu4k5iq8RHN4OJsNzeFcOM4TzaiQGNCGw5UIrdru7IAh
mdzP0qi+LQKRD13cS4bzb3sdJ/X8+6myIWAcGwnOZnnj35kcteVnmyzhqP0el7ts
KTyhRQv4DrX6c1hWxUNI7Z0FWARZ/s81AQwA0jf8OQSOCGXRKCxvOodpQCiGH4ZI
xdQPt1CfbxkbFH/ZjnC7s7kx2Q8woiuzJCjBJ4afXyuczU/GdEY6tf5CdVlN2Tvd
V4wgPqczVNN+/mCaSNxvo2mEY945NnIkhuOBDETPYtRuEUux5FL/oI4XmrpOP5Mk
VI9sOzmRWbwuoCtra9292nFXr1Y/YV/PAcgpPPETCcMpzeunvIQjnarPzExMI74i
QEhz2vB2PtOonEw5NlB1+lj+W2IbCDeUIZhoe56MnMNCVT9fo4ISr9ZPv9RWo3Bm
SuxPi4b0EUZb5Y5e46mADi/RhDrZdACi1U1dRjXRcWtJvoNOvq9iN3QuT/PuJwBf
m7OOV8k3dNWonFLSkNa19gPnYH3fr6aLMZH73u7KoQFU1ArDDWm8p1kOu6JHjc7S
TrdMw7/hwCFd/Dur3X9EwaBMlfZQL8EYyJ4/OJug/4YdfzuFGYC8UJGNBzQoXLEk
Zs0ogPcqf9GFSt48IBVYjfiVJDQOjmouVGf1ABEBAAEAC/4tr+ez76K7vf8fQ0r4
NjJAdJ4zr0BVKGGzBkVkRJlPUvryG1ub84mbIlNAR42TM/1IrRgpe6XENEyN/C5p
28TPUrWZ2wofqw9d9oIwMxf0SoP1hl0H75iLiOI3zEZWf47OHw1QbhkuzpvuosA2
QXNtWATGCeFZNGOCGqCVl1Gt00nxIzvOBBiZvX2gWM15Vmpp+X3Y/w6wl4D4tmI0
M8meHc3lbb7taCGvyVd1j5QjReigPovpeRpsu21jE4sw4vma/IZuiEgO+0JPA58K
atGP+y1mEHT78KyKc7EdJY+Pw9a4uD2eTdNOiHjOdFyBVf/JHX/nG0dBQrnL14J9
lQbGGQXxlt3qo5v9jp6NZJ+IC4/ONYmLBFFS5QWJ4rWveCO49wDjuPh5HVO4yvrX
KrxVA8GCkbV9ho3gCbJyMoqfNdcEtbzgKzc84W+alVrUUKbuUEPK6j+auGTLlPII
Wym6hqHPEN0bkr3qo1wn6nCyYz2J83RqgMKmw5Ovcz5zmjEGANR2GBQs0rYY5m3z
x2ISPu1ZHpaJW7UB1RfgmhCQ78NIUPOji8Qp2/Ehj94+/OULmTUkCTNXeFlt0PzF
atiOQWohM8aoA7K6ZJrk+PdPTu6/2seEtPm6YfaIMGO9TJgxcl5hC6jDc7x4wxj9
1Bw9zVzFGpRTfsgawVhO+BoM2tQ17R4oWVjXopGRUkznB/ZJiZXDbxeq7lNcqQou
6uib2SF3aMzes/a+CdQR6GC+cGNAEz3YRb6d4dsEmP3xQrEsRQYA/Uw95K8jjIYs
GSngKdpfAE8rEbn6Au92OKONEE1OvdFFuLg+m8R2TYXr9U8j5bA96lvKvSe/nAUj
jn7Vjnk3OFoO5htW0agkGIAKUDFS6ZljGdJWrD67IM+GHLHoVkIsDCY0JLS76HO7
JC/P08j+2K6IwSYqx8TUTywMPGtIRDEllgJwPTXKnV9H7WTbqqjNgWR3dalKKLY1
Ox76ZMCjn6JrkYR1WHnkIjLZSVLnPMSeohm7KvYwrnma4rvGPf/xBf9QvfZAjF8J
2Ez6LFePDA8joX9m75yXh1ClfPJpMhu4+gaaNPU7+S8gU52BvD6AFqzJQSvwZmB9
uzqiKQooqez1Js9zP/6+sPk91SmZzdvLjQ4/JwaiCPtw9/tGW8/nFQxNeg0jdOJV
IFPmop0+ouvyTINkfN69AgU3BuBGo+kTXRbjV7Q7JNdFFjSKBK56ptFJvR/h4mpE
0Lxvl0gKnmDxWYyE0Byquak0hd75O2O9ttRWeatE1b1o4bV0+A1Osi7lxIkBtgQY
AQgAIBYhBOYEaM5E13w/zp/QcnHbxWV/3mWnBQJZ/s81AhsMAAoJEHHbxWV/3mWn
miML/1kdi2CpT13v9bDCn4fokmHiY76sdeYuDmi7pqJ7fm7WZqcmA1PLDmjAddqA
YEN7DWGkKX5E5P0DcN5W7okTjyXgDUMwuwpI90gwRaDF8qsZp84R9D9ar0/dFTgd
OtT9Wh4O7rLlOPjLryyq4L2i7cyuMbohyM6ZEwr7XMjZokuUItoLj1d9lEOh3HEi
BGmTucPs+mv1dCWdfZVcDpzmrVKeA7Ax6OCn3FCqTVCqFBoJDoSz+w5rKnZZ0KCg
sOD8Z0rIOx+YphyhdV6P/J4dBuVpeZKSXp3YiNWRsv8hEozfYtZCkqi+F/keD5E/
X6AKKLaCt06y23Mh7sRY+bpnFLqqhn7L44YAv2SMr76EX+F9AZ59YfYaaOmbwaDw
zOZScbVC+uGceR1y3egkFxn2X2VXjPjg6kMiExkE/qe7jA4mReNgyok8iYyRwAYI
lfideiDOMKGhnwsAFPtFYPiQ7n+xHPIiseVDQyNfDyU08xlaeuRr89jKvwh0/6Xh
TRzalg==
=f96/
-----END PGP PRIVATE KEY BLOCK-----

Glossary

	MUA

	Mail User Agent.
Any program/client/app that handles e-mails for the end user.

	public key

	Public key is used in this spec to refer to an OpenPGP
“Transferable Public Key” [https://tools.ietf.org/html/rfc4880.html#section-11.1]. This is also
sometimes known as a “keyblock” or “OpenPGP certificate”.

Autocrypt-capable MUAs level 1 implementation status

Last updated: 2017-12-14

	MUA/project

	header
parsing

	keygen

	peer
state

	header
inject

	recommend

	encrypt

	setup
message

	setup
process

	uid
decorative

	[image: _images/deltachat.png]
delta.chat [https://delta.chat/]

	✔

	✔

	✔

	✔

	✔

	✔

	started

	started

	✔

	[image: _images/k9.png]
K-9 Mail [https://k9mail.github.io/]

	✔

	✔ 1

	✔

	✔

	✔

	✔

	branch

	branch

	✔

	[image: _images/enigmail.png]
Enigmail [https://www.enigmail.net/]

	✔

	✔

	✔

	✔ 2

	✘

	✔

	✔

	✔

	✘

	py-autocrypt [https://py-autocrypt.readthedocs.io/]

	✔

	✔

	✔

	✔

	✘

	✘

	✘

	✘

	✔

	[image: _images/notmuch.png]
notmuch [https://notmuchmail.org/]

	branch

	✘

	✘

	✘

	✘

	✘

	✘

	✘

	✔

	[image: _images/mailpile.png]
mailpile [https://www.mailpile.is/]

	
	
	
	
	
	
	
	
	

	gmime [https://github.com/jstedfast/gmime/]

	≥3.0.4

	N/A

	N/A

	≥3.0.4

	N/A

	N/A

	✘

	✘

	✔

Logos are copyright their respective owners.

Legend:

	MUA/project: denotes a mail app, library or tool.

	header parsing: compliant parsing of the Autocrypt header

	keygen: secret key generation follows Autocrypt UI guidance

	peerstate: state is kept according to spec

	header inject: proper creation of outgoing Autocrypt header

	recommend: implements Autocrypt recommendation

	encrypt: encrypts outgoing messages properly

	setup message: proper generation and processing of Autocrypt Setup Message

	setup process: follows guidance with respect to Autocrypt account setup

	uid decorative: UID in key data is only used for decorative
purposes, and in particular not for looking up keys for an e-mail address.

	1

	require passphrase

	2

	always send

For developers

Source code:

	py-autocrypt code [https://github.com/autocrypt/py-autocrypt]

	Enigmail code [https://sourceforge.net/p/enigmail/source/ci/master/tree/]

	K9: TODO

	Mailpile: TODO

	Notmuch/Alot: TODO

	Bitmask/LEAP refactorings [https://0xacab.org/leap/bitmask-dev/merge_requests/55/diffs]

	Go Autocrypt [https://github.com/autocrypt/go-autocrypt]

	Delta-Chat: TODO

Testing Autocrypt

There is an Autocrypt Bot which accepts and sends mails with Autocrypt
headers. Just write an E-Mail to bot@autocrypt.org. Find out more about the bot…

Potential ecosystem dangers of Autocrypt

This document is a place to describe particular concerns that Autocrypt
creates for the e-mail ecosystem as a whole. It does not address
attacks against the cryptography or compromises to the message
confidentiality it aims to support.

These risks may not be large risks, or they may be mitigatable in some
way, but we document them here for general awareness.

In all, we currently believe that the benefits to the ecosystem of
having more end-to-end message confidentiality outweigh these
potential risks.

Failures of Search

If Autocrypt MUAs are incapable of searching encrypted mail, users of
Autocrypt-capable MUAs may find e-mail less useful for normal
communication.

Message Deliverability

Autocrypt headers that use RSA 3072 are large enough
that, when unwrapped, they exceed the SMTP line length limit of 1000
ASCII characters.

It’s conceivable that some MTAs or MUAs will choke upon trying to deal
with these headers, and render the message undeliverable or
unreadable. We have no evidence of this happening today (December
2016), but maybe we’re just not yet tickling the systems that have
these problems.

Possible mitigations:

	sending duplicate headers each with parts of the key data. But
this makes reassembly and message-parsing logic significantly more
complex, and it would be nice to not need it.

Denial of Service: malicious creation of unreadable mail

An active attacker who wants to interrupt communication between two
parties can do so if they know that one party uses an Autocrypt-capable
agent. Consider the case where Mallory wants to interrupt
communications between Alice and Bob, and she knows that Bob uses an
Autocrypt-capable MUA.

Mallory crafts a new key K. She can throw away the secret key
material entirely if she wants to. She then forges an e-mail from
Alice and adds an Autocrypt header to it containing that
public key and prefer-encrypted=yes. If Bob writes a message to
Alice after receiving that key, and before receiving any other
legitimate message to Alice, his message will be encrypted to a key
that Alice cannot read.

this represents a risk to Alice, even if she has never adopted an
Autocrypt-capable MUA in the first place.

Mitigations:

	Alice’s next mail to Bob will correct Bob’s MUA’s state so that
futre mails will be back to Alice’s actually preferred state. So
the attacker must sustain a series of forgeries if the denial of
service attack is intended to be sustained.

	we should specify that any spam/malware flag set from a filter that
the user trusts should be sufficient to discourage processing of
Autocrypt headers, so that Mallory needs to craft a
sufficiently-plausible message (including DKIM and whatever other
indicators the filters care about) to make it into the
Autocrypt-capable MUA’s internal state storage.

Killing off strong encryption

Autocrypt is significantly weaker than traditional models of mail
encryption. In particular, it provides no resistance to an active
attacker (an attacker who can modify and/or inject mail as it passes
through the SMTP network). The no-UI feature makes it so that most
users will never properly verify each other’s encryption keys.

There is a concern that if opportunistically-encrypted mail becomes
the standard, no one will bother to implement good UX for users in strong
identity verification.

Mitigations:

	make out-of-band verification of keys between users
fun and thus increase the risk for attackers to get detected.

	research how “level 2” Autocrypt could evolve to offer
automated support against active attackers.

A note on Autocrypt and provider spam/malware filters

Mike Hearn raised some fundamental concerns in his Modern anti-spam
and E2E crypto post on the modern crypto mailing list [https://moderncrypto.org/mail-archive/messaging/2014/000780.html]
on how end-to-end encrypted mails and spam infrastructure possibly
interfere. While we may conceive new ways to fight spam in an E2E
setting by increased DKIM usage and other additional measures
the topic is a serious one as adoption of more encrypted mails
could be seriously hampered if encryption can bypass current
anti-spam technology.

Autocrypt works with existing provider Anti-Spam infrastructures
because they can continue to check the initial cleartext mails for
suspicious content. Only if a user replies to a (likely non-spam) mail
will Autocrypt make a MUA send an encryption key. Without being able to
get sufficiently many replies from users it will likely be to
massively harvest encryption keys; there is no central registery for
key-mail address relations. Massive collection of key/mailaddress
associations would require co-operation from or compromise of big mail
providers which is unlikely given they have been fighting unsolicited
mails for decades and their business models depend on it.

Interoperability With Other Cryptographic E-mail Mechanisms

Many MUAs that aim to become Autocrypt-compatible will already have
implementations of other e-mail encryption mechanisms.

We have concrete guidance for those MUAs that we hope is useful.

Message encryption recommendations

An Autocrypt-capable MUA that also incorporates the OpenPGP “Web of
Trust” might already know about a non-Autocrypt public key that it
considers to be correctly bound to the recipient e-mail address. It
may wish to prefer such a key, and to decide to use for a given
outbound message over any recommendations provided by Autocrypt.

For current OpenPGP users

	What about other keys, that i have been using with other properties?
(smart-card, RSA, …)

	You can still create a compatible header with a tool we will
provide. We are targeting users who have not used pgp
before. Nevertheless most MUAs will still support other key
formats. But they are not required to.

Todo

More guidance here!

Interoperability with existing PGP practises

should Autocrypt keys appear on key servers?

	no!

should i add rcvd Autocrypt keys into my PGP keyring? (if my mua already supports PGP)

	yes

should my own Autocrypt keys appear in my keyring?

	no
(why not? how else can we do encrypt-to-self, or message signing?)

can I put my regular pgp keys into Autocrypt?

	MUAs should not provide UI for importing keys for Level 1

	allowed for Level 1 to get traction early on (as replacement for keyservers)

can I use someone’s pgp key that i have for encrypting mail to that person?

	This would work like without Autocrypt

if i have for a person an non-Autocrypt pgp key and an Autocrypt key, which one do
i use to encrypt mails for that person?

	Look up e-mail address in pgp keyring

	if there is a key that has better user ID validity for the matching address than “unknown”, use that one

	else look up a key from the Autocrypt state (which is also in the keyring)

two target audiences:

	end-users

	mail software devs

Frequently Asked Questions about Autocrypt

Why are you using headers rather than attached keys?

Attachments are visible to users of non Autocrypt-compatible MUAs,
while headers are not. We don’t want to present distracting or
confusing material to those users.

Why are you sending keys in all the mails and not just announcing capabilities?

We did this in a previous version. We decided against it because it
requires the MUA to keep the information who announced Autocrypt and
who they requested keys from.

Why RSA3072 and 25519 only later?

Curve 25519 keys are shorter, cheaper to compute on, and likely to be
at least as strong as RSA 3072 against non-quantum attackers. You can
even write them down as a backup code. However, we want level 1 to be
implementable in 2017, and more toolkits support RSA 3072 than 25519.
Future versions are likely to encourage 25519 over RSA 3072.

So you say you care about header size… but then you type out prefer-encrypt?

An ECC key is roughly 500 bytes formatted in Base64 and RSA 3072 key
is about 2350 bytes. The Length of attribute name does not matter so
much. So we opted for readability.

Why do you drop all headers if there is more than one?

We could come up with rules on which header to pick. But whatever we
do, it has to be deterministic, clear and agreed upon by all MUAs
so their behaviour is predictable and stable for users who might try
multiple MUAs.

Dropping all headers is the simplest way to avoid an ambiguous state
in level 1. Once we have more experience from the field we’ll know how
this fails and at that point we’ll be in a position to draft more
complicated rules.

Forcibly rejecting multiple headers deters MUAs from gratiutously
sending conflicting headers which may confuse recipients.

What if I want my MUA to announce two different keys?

Level 1 aims to keep the complexity low for MUAs growing Autocrypt
support. If we want to enable multiple headers in the future we can
still add Autocrypt headers using a new critical attribute.
Versions that do not support it will ignore these headers as invalid and
just use the single valid Autocrypt header.

Why do you use the addr attribute rather than the uid from the key?

We want to be able to handle the header without having to parse the
key first. We believe that using the ‘addr’ attribute will be more
forward compatible. For example we discussed hashing the uid in the
Level 1 PGP keys so in case they leak to keyservers they do not leak
the e-mail address. This would not be compatible with requiring
the e-mail address as the uid.

How does Autocrypt interact with message signing?

In general, Autocrypt assumes that mail is either plaintext mail, or
it is both encrypted and signed. This assumption makes it possible to
create a simpler user experience.

While there are valid usecases for signed, unencrypted mail, or for
encrypted, unsigned mail, they are not the use case targeted by
Autocrypt.

Why use OpenPGP and PGP/MIME instead of some other encryption tech?

We picked a commonly-understood and widely used decentralized mail encryption
technology so that implementers wouldn’t need to start from scratch.

Future levels of the Autocrypt specification may support different
encryption technologies, but the main immediate goal is to get wider
adoption, not to re-invent the encryption mechanism itself.

Why don’t you use the User-Agent header to detect different mail apps?

Not all mail apps send a User-Agent header (and there is an ongoing
effort to discourage its use as a way to reduce metadata leakage).
Also, some mail apps are used only to read mail, and are not used to
send at all, so the remote peer can’t see anything about those specific
apps.

We could encourage each MUA to publish a UUID to inform the remote
peer that multiple mail apps are in use, but it’s not clear that this
offers much benefit, and it leaks information that we may not want to leak.

What about spammers accidentally downgrading encryption?

A spammer who forges mail from a given address could potentially
downgrade encryption for that person as a side effect. Please see
the Level 1 documentation for details
about expected interaction with spam filters.

How does Autocrypt interact with today’s mailing list managers?

Mailing lists that distribute cleartext (unencrypted) mail may end up
distributing their user’s public key material in the
Autocrypt headers of the distributed mail. For mailing
lists that rewrite From headers, these
Autocrypt headers will be dropped by recipients, which
is fine.

For encrypted mailing lists like schleuder [http://schleuder2.nadir.org/], we haven’t done a full analysis yet.
Help welcome.

Why do you require MUAs to detect if another is using Autocrypt already?

In the event that two Autocrypt-enabled MUAs operate a single
e-mail account, they could clash and cause usability problems:
If they each manage their own secret key material, communicating peers
might arbitrarily choose one key or another to encrypt to, and then
certain mails will be unreadable with certain MUAs, in an
apparently-arbitrary pattern based on the origin of the remote peer’s
last-received message.

Level 1 therefore defines an Autocrypt setup process which involves sending
and receiving a setup message. This allows two Autocrypt MUAs to share
secret key material so that mails can be decrypted and read on both devices.
This transfer of secret key material currently requires the user to type in
a long setup code. For level 2, we aim to provide a pairing mechanism
which only uses a short number to secure the peering.

Why do you cap Date to the current time?

E-mail messages with Date in the future could destroy
the ability to update the internal state.

However, since different MUAs process messages at different times,
future-dated e-mails could result in state de-synchronization.

Todo

deeper analysis of this state de-sync issue with future-dated
e-mails, or alternate, more-stable approaches to dealing with wrong
Date headers.

Why do you always encrypt-to-self?

Users expect to be able to read their outbox or Sent Messages folders.
Autocrypt should not get in the way of that.

Why prefer-encrypt=mutual and not more aggressive choices?

We considered and discarded several other designs for
prefer-encrypt before settling on prefer-encrypt=mutual. The
other designs we considered tended to have a scenario where e-mail was
automatically encrypted with greater frequency.

We opted for the less-aggressive design because we wanted to avoid
annoyances for users who want to be able to get encrypted e-mail when
they need it, but who actually have logistical trouble with handling
encrypted messages (e.g. the user often uses a liimted MUA
that cannot decrypt). In particular, unpleasant surprises (unwanted
encrypted mail) tended to happen when the communicating peers have
different preferences, which can demotivate the very people for whom
encrypted mail capability is marginal anyway.

We want to broaden the group of people who might be able to use
encrypted mail; to reduce the pressure to uninstall mail encryption
capabilities; and to reduce the human-to-human pushback (“please quit
sending me encrypted mail”). So we only automatically encrypt between
peers who have both opted in.

Why not use a better KDF for symmetric encryption of the Setup Message?

Use of a memory-hard KDF like scrypt or argon2 would be desirable in the future.
However, at the point of this writing this is not specified in OpenPGP. It is a
bigger concern to preserve compatibility and avoid friction with presently
deployed OpenPGP software.

Where does the “35 days” limit come from?

The recommendation algorithm uses a duration gap of 35 days to make a
decision in a few places. This is an arbitrary value, which seemed
plausible to most people who worked on the specification, based on the
idea that for people who you want to communicate with regularly, it’s
not uncommon that the user has exchanged e-mails at least once a
month. It’s intended to be slightly more than monthly, so that people
who have scheduled e-mail exchanges (e.g. “please check in on the 1st
of the month”) will stay current.

Future revisions to the recommendation algorithm may change this
cutoff. If you have evidence that there are algorithms that provide
better results, please share them!

Example User Interface for Autocrypt

Future Enhancements to Autocrypt

Please see Autocrypt Level 1: Enabling encryption, avoiding annoyances for information about Level 1 requirements.
Here, we document future improvements, which we hope will be
incorporated in Level 1, or possibly some later Level. This is an
unordered list. If you have ideas about how to address one of these
points, feel free to jump in! (but let’s try to stay focused on
getting Level 1 stable before we invest too much energy in these next
steps)

Contents

	Future Enhancements to Autocrypt

	Expiry

	Client sync

	New Types

	X.509 and S/MIME

	Deletable (“forward secure”) encrypted mail

	RSA3072 to Curve 25519

	Backups

	Guidance on masking Key IDs

	Encrypted headers

	Webmail

	Search

	Gossip (or “introduction e-mails”)

	Out-of-band key verification

	Heuristics for dealing with “nopreference”

Expiry

Todo

We need documentation about sensible key expiry
policies. Autocrypt-capable MUAs that choose to have an expiry
policy on their secret key material should use message composition
as an opportunity to refresh their secret key material or update
the expiration dates in their public certificate.

Client sync

Please see Multi-Device Pairing Considerations

Todo

We need to specify how to sync internal Autocrypt state between
MUAs. We want to be able to sync the state without sending sync
data for every message processed, while we also want all synced
peers to have the same internal state as much as possible. We
currently believe that syncing updates to pah and changed
should be sufficient, and that peers do not need to sync
last_seen. This has not been proved in practice.

New Types

Todo

how to deal with multiple types (at least when a new type is
specified). When we support types other than 0, it’s possible
that users will have multiple keys available, each with a different
type. That seems likely to introduce some awkward choices during
message composition time, particularly for multi-recipient
messages.

X.509 and S/MIME

Todo

Someone is bound to ask for this as a “key type”

Deletable (“forward secure”) encrypted mail

Todo

Given the Autocrypt infrastructure for key exchange, there’s no
reason we couldn’t define a mechanism for pairwise, ratcheted,
session-key establishment for e-mail.

RSA3072 to Curve 25519

Todo

Document change in preference for keys from RSA 3072 to Curve 25519.

Backups

see Autocrypt Secret Key Backup

Todo

We need guidance on how backups might be done safely.

Guidance on masking Key IDs

If any recipients are in Bcc: (rather than
To: or Cc:), and the keys used are
all OpenPGP, then the MUA SHOULD mask the recipient key
ID in the generated PKESK packets that correspond to the Bcc’ed
recipents. It does not need to mask recipient key IDs of normal
recipients.

Masking of Key IDs is done by setting the key ID to all-zeros. See
the end of section 5.1 RFC 4880 [https://tools.ietf.org/html/rfc4880.html#section-5.1] for more
details. Users of GnuPG can use the --hidden-recipient argument to
indicate a recipient who will be masked.

This is so that the message encryption does not leak much additional
metadata beyond what is already found in the headers of the message.
It still leaks the number of additional recipients, but the additional
work and usability issues involved with fixing that metadata leak
suggest that it’s better to leave that to a future level.

Encrypted headers

Todo

Document interaction with encrypted headers: if something like
Memory Hole [http://modernpgp.org/memoryhole/] ever makes it
possible to hide normal To: and Cc:
headers, then we need to rethink our approach to handling PKESK
leakage further.

Webmail

Todo

How does Autocrypt interact with webmail? Can we describe hooks
for webmail and browser extensions that make sense?

Search

Todo

Guidance for implementers on dealing with searching a mailbox that
has both cleartext and encrypted messages. (session key caching,
etc)

Gossip (or “introduction e-mails”)

Todo

Can we specify a sensible practice for passing around keys for
other people that we know about?

Or maybe it’d be simpler to define a standard workflow for
“introduction e-mails”, where the sender tells multiple recipients
about the keys she has for all of them.

Out-of-band key verification

Todo

Can we specify a simple, user-friendly way that Autocrypt users can
confirm each others’ “Autocrypt info” out of band?

If we do specify such a thing, what additional UI/UX would be
required?

Heuristics for dealing with “nopreference”

Todo

in Level 1, the Autocrypt recommendations for composing mail to a
remote peer with prefer-encrypted set to nopreference look
very much the same as the recommendations for when
prefer-encrypted is set to no. But different heuristics
could be applied to the nopreference case for MUAs that want to
help users be slightly more aggressive about sending encrypted
mail.

Documenting reasonable heuristics for MUAs to use in this case
would be very helpful.

Autocrypt Secret Key Backup

This is for Autocrypt Level 1 or later…

The MUA generates a strong “backup code” and gets the user to write it
down somewhere. Then it serializes its secret key material into a
message encrypted by the the backup code. This message is given a
custom header and is sent to the account in question:

Autocrypt-Secret-Key-Backup: key_backup_data=<encrypted_secret_key>
From: alice@example.net
To: alice@example.net

Todo

should the MUA store the message in the SMA, or store it to file or
what?

Restore

Todo

Fill in here

Prompting the user for backup code?

Note also that the backup code MUST be strong – it is subject to
brute force attacks by anyone who holds a copy.

Backup and Sync

Todo

say something about the relationship between backup and sync

Cleanup needed

RFC 2231 [https://tools.ietf.org/html/rfc2231.html] talks about the elements of a MIME header as “parameters”
instead of “attributes”. RFC 2045 [https://tools.ietf.org/html/rfc2045.html] specifies the same vocab. We
should normalize.

Let’s use “cert” where we mean “cert” and “key” where we mean “key”

user-facing material probably should use “app” – for technical
documentation, we need to settle internally on “agent” or “client” or
“MUA” or “MUAA”

glossary for technical documentation.

Multi-Device Pairing Considerations

Shared MUAA Messaging Archive

characteristics/requirements of of what SMAs need to provide:

	a SMA can be implemented on top of IMAP commands

	is used to synchronize states between MUAAs. We use “MUAAs” to
indicate a particular MUA/Account combination because synchronization
happens betweens accounts managed by different MUAs.

	is used to send and receive messages between MUAAs (concurrently),
for example pairing requests, initial Autocrypt setup (of first MUAA),
updates to received remote Autocrypt encryption keys.

	A MUAA needs to be able to detect if there is any other MUAA

	messages are not (necessarily) human readable and don’t appear in the
regular inbox.

	probably: size of SMA should not grow linearly with number of
incoming/outgoing mails, for example messages that have been
processed by a MUA must be deleted

	there should be a policy/expiry of messages for MUAAs which don’t
exist/are not alive anymore

	we only require from IMAP servers that they handle first level folders
(subfolders are not necessary)

	there is a header in the messages stored in these folders, indicating
that the message is an SMA message.

implementation on top of IMAP, pairing happy path

Let’s suppose we have a first MUAA. It doesn’t find an _Autocrypt_SMA
announcement folder so it will do the following:

	create a random new number “1” which we call MUAA-ID.

	create an _Autocrypt_SMA “announcements” folder and
append some MUAA description message, most notably
the MUAA-ID

	create an inbox folder _Autocrypt_SMA_1 where other
MUAAs will be able to send/drop messages.

If now another MUAA is added:

	create a random new number “27” as MUAA-ID.

	discover the _Autocrypt_SMA folder exists and read all
of its messages, discover that there is an 1 MUAA

	create an inbox folder _Autocrypt_SMA_27 where other
MUAAs will be able to send/drop messages.

	append a new MUAA description message to _Autocrypt_SMA

	append a pairing request message to the “1” inbox (_Autocrypt_SMA_1).

The MUAA “1” will then:

	discover “27” from the new message in the announcement folder _Autocrypt_SMA

	read the pairing request message from its own _Autocrypt_SMA_1 inbox

	process the pairing request and send a pairing accept message to “27” by appending
it to the _Autocrypt_SMA_27 folder.

	delete the pairing request message from its own _Autocrypt_SMA_1 folder.

Note

In this happy path example we are not prescribing the precise pairing procedure,
merely give an example how bootstrapping into a multi-MUA setting works.
It is unclear whether a centrally shared keyring as an IMAP folder is viable
(synchronization between MUAs, “merge conflict” between state, deleting
message might be a problem, encrypted “broadcast” to all my MUAAs)

Todo

Critically consider how the multiple Autocrypt folders show in user interfaces.
It might be better to depend on sub folders.

Todo

Crically consider end-to-end encryption for MUAA messages.

Todo

Consider how to force remove devices through IMAP folder deletion or something.

types of inter-MUAA unicast messages

Difficult to reason about when we don’t know what we really want to do
(cryptographic protocol wise)

ID announcement

pairing messages

	Some authenticated key exchange so later messages between MUAAs can be encrypted

	Shared private key so messages encrypted to the account’s public key
can be encrypted and outgoing mail can be signed

remote key updates

	notify other MUAAs that you add to or change an entry to your keyring

Note

Why not use IMAP METADATA instead of specially-named folders?

We ultimately want Autocrypt to be more generic than IMAP, to make it
clear how other mail-checking protocols could work (e.g. MAPI, webmail
interfaces) as long as they offer some sort of namespaced shared
storage. Using IMAP METADATA [https://tools.ietf.org/html/rfc5464.html] would tie Autocrypt more
tightly to IMAP, and would also limit the number of IMAP
implementations that Autocrypt-enabled MUAs could connect to
(METADATA is not widely supported by today’s IMAP server
implementations [http://www.imapwiki.org/Specs]).

If we wanted Autocrypt to use METADATA where it was available on the
server, but allow for fallback to normal folders for IMAP servers that
don’t support METADATA, then we’d be adding an implementation
requirement for MUAs that might not already know how to use the
METADATA extension, which makes adoption harder.

And without initially requiring it for MUAs, we don’t see a way to
transition once non-METADATA capable MUAs exist in the wild,
either, since lockout and sync become difficult to do. So we don’t
see a good story for METADATA deployment, sadly, despite it targeting
our use case fairly neatly.

See also earlier discussion about IMAP METADATA [https://github.com/autocrypt/autocrypt/issues/12].

Optional per-peer state

An Autocrypt-capable MUA must store some specific state about each
of its peers.

This document attempts to describe additional optional state that can
improve the user experience in some corner cases.

Unlike the standard Autocrypt level 1 state management, some of these
rules depend on a MUA being able to keep track of whether it has
seen a given message before or not, and these guidelines may cause
non-deterministic results depending on the order that messages are
encountered.

Additional state

An agent MAY store additional per-peer metadata about observed
Autocrypt messages. This can be used to provide more helpful
information when user intervention is required.

	counting_since: The UTC timestamp of when we started counting

	count_have_ach: A count of parsed AutoCrypt headers

	count_no_ach: A count of messages without AutoCrypt headers

	bad_user_agent: The apparent user-agent (if known) of the last
message seen without AutoCrypt headers.

The theory is that a message of the form “The recipient may not be
able to read encrypted mail” could be augmented with reasons such as
“The last 5 messages we saw from them all came from a non-AutoCrypt
capable e-mail application”, or “Their most recent message was sent on
April 5th using Apple Mail on an iPad.”

Managing additional state

When processing a message from the peer:

	If counting_since is unset, set it to the current time.
Otherwise, if effective_date is greater than counting_since:

	If no Autocrypt header is available, increment count_no_ac.

	If an Autocrypt header is available, increment count_have_ac.

When processing a message without an autocrypt header from a peer who
has send an header in the past and thus has a autocrypt_timestamp:

	set bad_user_agent to the apparent user-agent of the message

	If counting_since is older than autocrypt_timestamp and more
than 35 days older than effective_date:

	set counting_since to last_seen

	set count_have_ach to zero

	set count_no_ach to one

Using additional state

During message composition, if the Autocrypt recommendation is
discourage this state can be used to craft a more-informative
warning message for the user.

Share your experiences with autocrypt!

A guest post by b3yond, on 05.11.2017.

Many IT people are a bit afraid of writing blog posts. There are no
clear rules on how to do it, you can’t look up how the standard is,
and copy-pasting is discouraged by societal norms of intellectual
property.

There is no reason to be afraid though! We all have weird thoughts,
and we all want to know what stuff other people are thinking. We want
to share experiences, knowledge and some stupid proposal which
probably will not work anyway.

So get your thoughts on paper!

Surely you have something in your mind which is worth sharing with
the world, so people can learn more about autocrypt. Just write it
down in rst format, and submit it to mailto:guest-blog@autocrypt.org,
so we can review and publish it.

Thanks!

Publishing a blogpost

If the guest post is fine so far and should be published on the
website, take these steps:

	save it as name.rst in
https://github.com/autocrypt/autocrypt/tree/master/doc/blog, be
careful that the filename is no duplicate

	put the title and the first paragraph + link with “read more…” in
news.rst

	spread the article on mailing list & social media

Fine, now the article is public!

Mail apps which support Autocrypt

Last update: Dec 6th 2017

The following Autocrypt-enabled mail apps are available
and/or under development:

DeltaChat

DeltaChat [https://delta.chat] is an Autocrypt-enabled chat client for Android that uses
E-Mail for messaging, offering a modern “Messenger” interface.
You can download it or install it via F-Droid [https://f-droid.org] today.

Enigmail (development version)

Enigmail [https://enigmail.net] is a plugin for Thunderbird [https://www.mozilla.org/en-US/thunderbird/]. For years, it has been the
first choice to use OpenPGP encryption with E-Mail. Enigmail aims to reach
Autocrypt Level 1 compliance with the next major release scheduled for Q1/2018.
You can test it via Nightly Build today.

K-9 Mail (development version)

K-9 Mail [https://k9mail.github.io/] is for Android what Thunderbird is for Desktop PCs. It integrates
Autocrypt by default in beta branches and aims to reach
Autocrypt Level 1 compliance soon.

Mailpile (release candidate)

Mailpile [https://mailpile.is] is a new Mail app which runs on Windows, Linux and Mac. It offers
a modern web interface and has Autocrypt support.

Autocrypt for Enigmail Nightly Build

Last update: Dec 6th 2017

Enigmail has integrated Autocrypt support in Enigmail nightly development
branches [https://sourceforge.net/p/enigmail/source/ci/master/tree/] and aims to reach Autocrypt Level 1 compliance with the
next major release scheduled for Q1/2018.

You can test Autocrypt in Enigmail already today:

	Download .xpi from https://www.enigmail.net/index.php/en/download/nightly-build

	Navigate to “Tools / Add-ons / Plugins” and click on the little cogwheel atop of the page;
there click on “Install Add-on From File” and select the .xpi

	The following setup may require a restart of Thunderbird

	Then, navigate to “Edit / Preferences / Advanced / Config Editor”, read the warning and
scroll down to “extensions.enigmail.autocryptMode”: Double-click the entry and enter a 1

News about autocrypt

Recent news from the autocrypt community.

Share your experiences with autocrypt!

A guest post by b3yond, on 05.11.2017.

Many IT people are a bit afraid of writing blog posts. There are no clear rules on how to do it, you can’t look up how the standard is, and copy-pasting is discouraged by societal norms of intellectual property.

There is no reason to be afraid though! We all have…

MORE…

Autocrypt bot

Implemented using py-autocrypt [https://py-autocrypt.readthedocs.io/].

Responder

We deploy a preliminary auto-responder which accepts and sends mails
with Autocrypt headers. Just sent a mail to bot@autocrypt.org and wait for the reply
and look at the headers. As of January 2017, the Bot does not implement the full
Level 1 protocol.

Bot Dovecot IMAP

You can login to IMAP/Dovecot (port 993, TLS mandatory) with the
username “bot” and the password as stored in gitcrypt/credentials.txt.
Ask on IRC or the mailing list and provide your gpg public key for access to
the password credentials using git-crypt [https://www.agwa.name/projects/git-crypt/].

ssh access to bot account

You can ssh to the bot account: ssh -l bot mail.autocrypt.org,
ECDSA key fingerprint is SHA256:4RWh81zOd/Pgq3mHhKpyLdVZJfOpq+DgqKheUIhJgWQ.
Ask on IRC to get your SSH key added (anyone already with access
to the bot@autocrypt.org account can add it to .ssh/authorized_keys).

Index

 M
 | P
 | R

M

 	
 	MUA

P

 	
 	public key

R

 	
 	
 RFC

 	RFC 2045

 	RFC 2177

 	RFC 2231

 	RFC 3156

 	RFC 3798

 	RFC 4880#section-11.1, [1], [2], [3], [4]

 	RFC 4880#section-11.2, [1]

 	RFC 4880#section-3.7.1.3

 	RFC 4880#section-5.1

 	RFC 4880#section-5.11

 	RFC 4880#section-5.13

 	RFC 4880#section-5.3

 	RFC 5321#section-2.3.11

 	RFC 5322

 	RFC 5322#section-3.6.2

 	RFC 5464

 	RFC 5891#section-4.4

 	RFC 7435#section-1.2, [1]

 	RFC 822

 [image: _images/autocrypt_logo.png]
[image: _images/autocrypt_logo_alone.png]
[image: _images/autocrypt_title.png]
[image: _images/open_standard.png]
[image: _images/email_logo.png]
[image: _images/aclogo.png]

 Convenient End-to-End Encryption for E-Mail

 [image: e-mail Logo]
 _images/open_standard.png

nav.xhtml

 Table of Contents

 		
 Current docs (work-in-progress)

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/comment-close.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/file.png

_static/minus.png

_images/aclogo.png
@

_static/up-pressed.png

_static/up.png

_images/autocrypt_logo_alone.png

_images/autocrypt_title.png
autocrypt

